Code
::tar_load(volume_demog_df, store = "../_targets")
targets<- volume_demog_df |>
demo_df ::distinct() dplyr
This page summarizes the demographic characteristics of participants in shared volumes on Databrary.
::tar_load(volume_demog_df, store = "../_targets")
targets<- volume_demog_df |>
demo_df ::distinct() dplyr
All owners.
TODO: Fix importing of owners data.
<- load_owner_csvs("csv", fn_suffix = "-owners") owner_df
The session-level CSV data are stored in a local directory that is not synched with GitHub. To generate the report, one must generate and save the data locally.
Databrary has demographic data for ~ n= 10725 individual participant-sessions. This number is an underestimate because the number of unshared volumes is 3-4x the number of shared volumes.
<- volume_demog_df |>
demo_df ::mutate(vol_url = paste0("https://nyu.databrary.org/volume/", as.numeric(vol_id))) dplyr
<- demo_df |>
age_df ::filter(!is.na(age_days)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
age_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00008 | https://nyu.databrary.org/volume/8 | 1112 |
00564 | https://nyu.databrary.org/volume/564 | 459 |
00090 | https://nyu.databrary.org/volume/90 | 312 |
00739 | https://nyu.databrary.org/volume/739 | 295 |
00011 | https://nyu.databrary.org/volume/11 | 236 |
00087 | https://nyu.databrary.org/volume/87 | 231 |
01020 | https://nyu.databrary.org/volume/1020 | 220 |
00322 | https://nyu.databrary.org/volume/322 | 173 |
00359 | https://nyu.databrary.org/volume/359 | 169 |
01042 | https://nyu.databrary.org/volume/1042 | 161 |
01364 | https://nyu.databrary.org/volume/1364 | 157 |
00030 | https://nyu.databrary.org/volume/30 | 155 |
01075 | https://nyu.databrary.org/volume/1075 | 138 |
00005 | https://nyu.databrary.org/volume/5 | 133 |
00088 | https://nyu.databrary.org/volume/88 | 132 |
00184 | https://nyu.databrary.org/volume/184 | 129 |
00226 | https://nyu.databrary.org/volume/226 | 129 |
00989 | https://nyu.databrary.org/volume/989 | 127 |
00563 | https://nyu.databrary.org/volume/563 | 118 |
00271 | https://nyu.databrary.org/volume/271 | 115 |
00089 | https://nyu.databrary.org/volume/89 | 114 |
01526 | https://nyu.databrary.org/volume/1526 | 111 |
00083 | https://nyu.databrary.org/volume/83 | 109 |
00114 | https://nyu.databrary.org/volume/114 | 105 |
00084 | https://nyu.databrary.org/volume/84 | 104 |
00988 | https://nyu.databrary.org/volume/988 | 101 |
00140 | https://nyu.databrary.org/volume/140 | 97 |
00162 | https://nyu.databrary.org/volume/162 | 93 |
00070 | https://nyu.databrary.org/volume/70 | 91 |
00460 | https://nyu.databrary.org/volume/460 | 91 |
00152 | https://nyu.databrary.org/volume/152 | 84 |
01273 | https://nyu.databrary.org/volume/1273 | 82 |
00484 | https://nyu.databrary.org/volume/484 | 81 |
00434 | https://nyu.databrary.org/volume/434 | 79 |
00868 | https://nyu.databrary.org/volume/868 | 77 |
00308 | https://nyu.databrary.org/volume/308 | 76 |
01379 | https://nyu.databrary.org/volume/1379 | 76 |
01567 | https://nyu.databrary.org/volume/1567 | 74 |
00253 | https://nyu.databrary.org/volume/253 | 73 |
00207 | https://nyu.databrary.org/volume/207 | 71 |
00269 | https://nyu.databrary.org/volume/269 | 71 |
00321 | https://nyu.databrary.org/volume/321 | 71 |
00081 | https://nyu.databrary.org/volume/81 | 69 |
00004 | https://nyu.databrary.org/volume/4 | 67 |
00899 | https://nyu.databrary.org/volume/899 | 65 |
00950 | https://nyu.databrary.org/volume/950 | 65 |
01436 | https://nyu.databrary.org/volume/1436 | 65 |
00136 | https://nyu.databrary.org/volume/136 | 62 |
00835 | https://nyu.databrary.org/volume/835 | 62 |
01103 | https://nyu.databrary.org/volume/1103 | 62 |
00837 | https://nyu.databrary.org/volume/837 | 59 |
00350 | https://nyu.databrary.org/volume/350 | 58 |
00150 | https://nyu.databrary.org/volume/150 | 57 |
00007 | https://nyu.databrary.org/volume/7 | 55 |
00163 | https://nyu.databrary.org/volume/163 | 55 |
00144 | https://nyu.databrary.org/volume/144 | 52 |
00192 | https://nyu.databrary.org/volume/192 | 51 |
01141 | https://nyu.databrary.org/volume/1141 | 48 |
01312 | https://nyu.databrary.org/volume/1312 | 48 |
00827 | https://nyu.databrary.org/volume/827 | 47 |
01129 | https://nyu.databrary.org/volume/1129 | 47 |
01415 | https://nyu.databrary.org/volume/1415 | 47 |
00954 | https://nyu.databrary.org/volume/954 | 46 |
01026 | https://nyu.databrary.org/volume/1026 | 46 |
01551 | https://nyu.databrary.org/volume/1551 | 46 |
01108 | https://nyu.databrary.org/volume/1108 | 44 |
01328 | https://nyu.databrary.org/volume/1328 | 43 |
00400 | https://nyu.databrary.org/volume/400 | 41 |
00455 | https://nyu.databrary.org/volume/455 | 41 |
00941 | https://nyu.databrary.org/volume/941 | 41 |
01448 | https://nyu.databrary.org/volume/1448 | 41 |
00854 | https://nyu.databrary.org/volume/854 | 39 |
01517 | https://nyu.databrary.org/volume/1517 | 39 |
00146 | https://nyu.databrary.org/volume/146 | 38 |
00123 | https://nyu.databrary.org/volume/123 | 37 |
00476 | https://nyu.databrary.org/volume/476 | 35 |
00218 | https://nyu.databrary.org/volume/218 | 34 |
00957 | https://nyu.databrary.org/volume/957 | 34 |
00979 | https://nyu.databrary.org/volume/979 | 34 |
01515 | https://nyu.databrary.org/volume/1515 | 34 |
00075 | https://nyu.databrary.org/volume/75 | 33 |
00174 | https://nyu.databrary.org/volume/174 | 33 |
00444 | https://nyu.databrary.org/volume/444 | 33 |
01397 | https://nyu.databrary.org/volume/1397 | 33 |
00135 | https://nyu.databrary.org/volume/135 | 32 |
00073 | https://nyu.databrary.org/volume/73 | 31 |
00098 | https://nyu.databrary.org/volume/98 | 31 |
01066 | https://nyu.databrary.org/volume/1066 | 31 |
00943 | https://nyu.databrary.org/volume/943 | 30 |
01321 | https://nyu.databrary.org/volume/1321 | 30 |
01370 | https://nyu.databrary.org/volume/1370 | 30 |
01365 | https://nyu.databrary.org/volume/1365 | 28 |
00821 | https://nyu.databrary.org/volume/821 | 26 |
01128 | https://nyu.databrary.org/volume/1128 | 26 |
01363 | https://nyu.databrary.org/volume/1363 | 25 |
01143 | https://nyu.databrary.org/volume/1143 | 23 |
00452 | https://nyu.databrary.org/volume/452 | 22 |
00132 | https://nyu.databrary.org/volume/132 | 19 |
00443 | https://nyu.databrary.org/volume/443 | 19 |
00996 | https://nyu.databrary.org/volume/996 | 19 |
01391 | https://nyu.databrary.org/volume/1391 | 19 |
01422 | https://nyu.databrary.org/volume/1422 | 19 |
00108 | https://nyu.databrary.org/volume/108 | 17 |
01481 | https://nyu.databrary.org/volume/1481 | 17 |
00169 | https://nyu.databrary.org/volume/169 | 16 |
01008 | https://nyu.databrary.org/volume/1008 | 16 |
01376 | https://nyu.databrary.org/volume/1376 | 16 |
00171 | https://nyu.databrary.org/volume/171 | 15 |
00710 | https://nyu.databrary.org/volume/710 | 15 |
00956 | https://nyu.databrary.org/volume/956 | 14 |
00124 | https://nyu.databrary.org/volume/124 | 13 |
00217 | https://nyu.databrary.org/volume/217 | 13 |
00390 | https://nyu.databrary.org/volume/390 | 13 |
00966 | https://nyu.databrary.org/volume/966 | 13 |
00145 | https://nyu.databrary.org/volume/145 | 12 |
00149 | https://nyu.databrary.org/volume/149 | 12 |
00761 | https://nyu.databrary.org/volume/761 | 11 |
00015 | https://nyu.databrary.org/volume/15 | 10 |
00323 | https://nyu.databrary.org/volume/323 | 10 |
01590 | https://nyu.databrary.org/volume/1590 | 10 |
00148 | https://nyu.databrary.org/volume/148 | 9 |
01442 | https://nyu.databrary.org/volume/1442 | 9 |
01459 | https://nyu.databrary.org/volume/1459 | 7 |
01663 | https://nyu.databrary.org/volume/1663 | 7 |
01400 | https://nyu.databrary.org/volume/1400 | 6 |
01576 | https://nyu.databrary.org/volume/1576 | 6 |
01656 | https://nyu.databrary.org/volume/1656 | 6 |
00002 | https://nyu.databrary.org/volume/2 | 4 |
00254 | https://nyu.databrary.org/volume/254 | 4 |
00241 | https://nyu.databrary.org/volume/241 | 3 |
00881 | https://nyu.databrary.org/volume/881 | 3 |
00009 | https://nyu.databrary.org/volume/9 | 2 |
00760 | https://nyu.databrary.org/volume/760 | 2 |
00982 | https://nyu.databrary.org/volume/982 | 2 |
01023 | https://nyu.databrary.org/volume/1023 | 2 |
01362 | https://nyu.databrary.org/volume/1362 | 2 |
01596 | https://nyu.databrary.org/volume/1596 | 2 |
00101 | https://nyu.databrary.org/volume/101 | 1 |
00116 | https://nyu.databrary.org/volume/116 | 1 |
00142 | https://nyu.databrary.org/volume/142 | 1 |
00876 | https://nyu.databrary.org/volume/876 | 1 |
01073 | https://nyu.databrary.org/volume/1073 | 1 |
01509 | https://nyu.databrary.org/volume/1509 | 1 |
01624 | https://nyu.databrary.org/volume/1624 | 1 |
01657 | https://nyu.databrary.org/volume/1657 | 1 |
01688 | https://nyu.databrary.org/volume/1688 | 1 |
01705 | https://nyu.databrary.org/volume/1705 | 1 |
There are n= 147 shared volumes reporting age_days
.
The following summarizes the number of individual participant-sessions for whom there are data.
<- demo_df |>
age_df ::mutate(age_grp = cut(as.numeric(demo_df$age_days), c(0, 90, 180, 365.25, 2*365.25, 3*365.25, 4*365.25, 5*365.25, 15*365.25, 20*365.25, 25*365.25, 100*365.25), c("<3m", "3-6m", "6m-1y", "1-2y", "2-3y", "3-4y", "4-5y", "5-15y", "15-20y", "20-25y", ">25y")))
dplyr
xtabs(formula = ~ age_grp, data = age_df)
age_grp
<3m 3-6m 6m-1y 1-2y 2-3y 3-4y 4-5y 5-15y 15-20y 20-25y >25y
103 157 1176 3390 875 474 897 1527 74 308 411
|>
demo_df ::filter(age_days <= 365.24*5) |>
dplyr::ggplot() +
ggplot2::aes(age_days) +
ggplot2::geom_histogram() +
ggplot2::ggtitle("Age at test (days) for 5-year-olds and younger") ggplot2
Don't know how to automatically pick scale for object of type <difftime>.
Defaulting to continuous.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
|>
demo_df ::filter(age_days > 365.24*5,
dplyr<= 365.24*15) |>
age_days ::ggplot() +
ggplot2::aes(age_days) +
ggplot2::geom_histogram() +
ggplot2::ggtitle("Age at test (days) for 5-15 year-olds") ggplot2
Don't know how to automatically pick scale for object of type <difftime>.
Defaulting to continuous.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
|>
demo_df ::filter(age_days > 365.24*15) |>
dplyr::ggplot() +
ggplot2::aes(age_days) +
ggplot2::geom_histogram() +
ggplot2::ggtitle("Age at test (days) 15+ year-olds") ggplot2
Don't know how to automatically pick scale for object of type <difftime>.
Defaulting to continuous.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
<- demo_df |>
gender_df ::filter(!is.na(participant_gender)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
gender_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00008 | https://nyu.databrary.org/volume/8 | 1318 |
00564 | https://nyu.databrary.org/volume/564 | 459 |
00090 | https://nyu.databrary.org/volume/90 | 312 |
00739 | https://nyu.databrary.org/volume/739 | 295 |
00011 | https://nyu.databrary.org/volume/11 | 236 |
00087 | https://nyu.databrary.org/volume/87 | 231 |
01020 | https://nyu.databrary.org/volume/1020 | 220 |
00359 | https://nyu.databrary.org/volume/359 | 216 |
00400 | https://nyu.databrary.org/volume/400 | 182 |
00322 | https://nyu.databrary.org/volume/322 | 173 |
00184 | https://nyu.databrary.org/volume/184 | 161 |
01042 | https://nyu.databrary.org/volume/1042 | 161 |
00030 | https://nyu.databrary.org/volume/30 | 157 |
01364 | https://nyu.databrary.org/volume/1364 | 156 |
00149 | https://nyu.databrary.org/volume/149 | 155 |
00139 | https://nyu.databrary.org/volume/139 | 142 |
01075 | https://nyu.databrary.org/volume/1075 | 138 |
00005 | https://nyu.databrary.org/volume/5 | 133 |
00088 | https://nyu.databrary.org/volume/88 | 132 |
00226 | https://nyu.databrary.org/volume/226 | 129 |
00989 | https://nyu.databrary.org/volume/989 | 127 |
00563 | https://nyu.databrary.org/volume/563 | 118 |
00207 | https://nyu.databrary.org/volume/207 | 116 |
00253 | https://nyu.databrary.org/volume/253 | 115 |
00271 | https://nyu.databrary.org/volume/271 | 115 |
00089 | https://nyu.databrary.org/volume/89 | 114 |
00150 | https://nyu.databrary.org/volume/150 | 111 |
01526 | https://nyu.databrary.org/volume/1526 | 111 |
00083 | https://nyu.databrary.org/volume/83 | 109 |
00308 | https://nyu.databrary.org/volume/308 | 109 |
00988 | https://nyu.databrary.org/volume/988 | 109 |
00114 | https://nyu.databrary.org/volume/114 | 105 |
00084 | https://nyu.databrary.org/volume/84 | 104 |
00269 | https://nyu.databrary.org/volume/269 | 102 |
00140 | https://nyu.databrary.org/volume/140 | 97 |
00950 | https://nyu.databrary.org/volume/950 | 95 |
00162 | https://nyu.databrary.org/volume/162 | 93 |
00460 | https://nyu.databrary.org/volume/460 | 91 |
00484 | https://nyu.databrary.org/volume/484 | 90 |
01141 | https://nyu.databrary.org/volume/1141 | 90 |
01129 | https://nyu.databrary.org/volume/1129 | 89 |
00070 | https://nyu.databrary.org/volume/70 | 88 |
00152 | https://nyu.databrary.org/volume/152 | 84 |
01273 | https://nyu.databrary.org/volume/1273 | 82 |
00434 | https://nyu.databrary.org/volume/434 | 79 |
00868 | https://nyu.databrary.org/volume/868 | 77 |
01379 | https://nyu.databrary.org/volume/1379 | 76 |
01567 | https://nyu.databrary.org/volume/1567 | 74 |
00321 | https://nyu.databrary.org/volume/321 | 71 |
00004 | https://nyu.databrary.org/volume/4 | 67 |
00899 | https://nyu.databrary.org/volume/899 | 65 |
01436 | https://nyu.databrary.org/volume/1436 | 65 |
00081 | https://nyu.databrary.org/volume/81 | 63 |
00136 | https://nyu.databrary.org/volume/136 | 62 |
00835 | https://nyu.databrary.org/volume/835 | 62 |
01103 | https://nyu.databrary.org/volume/1103 | 62 |
00350 | https://nyu.databrary.org/volume/350 | 58 |
00837 | https://nyu.databrary.org/volume/837 | 58 |
00854 | https://nyu.databrary.org/volume/854 | 57 |
00007 | https://nyu.databrary.org/volume/7 | 55 |
00163 | https://nyu.databrary.org/volume/163 | 55 |
00144 | https://nyu.databrary.org/volume/144 | 52 |
00192 | https://nyu.databrary.org/volume/192 | 51 |
01312 | https://nyu.databrary.org/volume/1312 | 48 |
00827 | https://nyu.databrary.org/volume/827 | 47 |
01415 | https://nyu.databrary.org/volume/1415 | 47 |
00954 | https://nyu.databrary.org/volume/954 | 46 |
01026 | https://nyu.databrary.org/volume/1026 | 46 |
01551 | https://nyu.databrary.org/volume/1551 | 46 |
01108 | https://nyu.databrary.org/volume/1108 | 44 |
01328 | https://nyu.databrary.org/volume/1328 | 43 |
00941 | https://nyu.databrary.org/volume/941 | 42 |
00455 | https://nyu.databrary.org/volume/455 | 41 |
01128 | https://nyu.databrary.org/volume/1128 | 41 |
01448 | https://nyu.databrary.org/volume/1448 | 41 |
00108 | https://nyu.databrary.org/volume/108 | 40 |
01517 | https://nyu.databrary.org/volume/1517 | 39 |
00146 | https://nyu.databrary.org/volume/146 | 38 |
00123 | https://nyu.databrary.org/volume/123 | 37 |
00476 | https://nyu.databrary.org/volume/476 | 35 |
00218 | https://nyu.databrary.org/volume/218 | 34 |
00592 | https://nyu.databrary.org/volume/592 | 34 |
00957 | https://nyu.databrary.org/volume/957 | 34 |
00979 | https://nyu.databrary.org/volume/979 | 34 |
01515 | https://nyu.databrary.org/volume/1515 | 34 |
00075 | https://nyu.databrary.org/volume/75 | 33 |
00098 | https://nyu.databrary.org/volume/98 | 33 |
00135 | https://nyu.databrary.org/volume/135 | 33 |
00174 | https://nyu.databrary.org/volume/174 | 33 |
00444 | https://nyu.databrary.org/volume/444 | 33 |
01397 | https://nyu.databrary.org/volume/1397 | 33 |
01321 | https://nyu.databrary.org/volume/1321 | 32 |
00073 | https://nyu.databrary.org/volume/73 | 31 |
00101 | https://nyu.databrary.org/volume/101 | 31 |
01066 | https://nyu.databrary.org/volume/1066 | 31 |
00943 | https://nyu.databrary.org/volume/943 | 30 |
01370 | https://nyu.databrary.org/volume/1370 | 30 |
01365 | https://nyu.databrary.org/volume/1365 | 28 |
00452 | https://nyu.databrary.org/volume/452 | 26 |
00821 | https://nyu.databrary.org/volume/821 | 26 |
01363 | https://nyu.databrary.org/volume/1363 | 25 |
01143 | https://nyu.databrary.org/volume/1143 | 24 |
00443 | https://nyu.databrary.org/volume/443 | 20 |
00132 | https://nyu.databrary.org/volume/132 | 19 |
00996 | https://nyu.databrary.org/volume/996 | 19 |
01391 | https://nyu.databrary.org/volume/1391 | 19 |
01422 | https://nyu.databrary.org/volume/1422 | 19 |
00390 | https://nyu.databrary.org/volume/390 | 18 |
00171 | https://nyu.databrary.org/volume/171 | 17 |
01481 | https://nyu.databrary.org/volume/1481 | 17 |
00169 | https://nyu.databrary.org/volume/169 | 16 |
00710 | https://nyu.databrary.org/volume/710 | 16 |
01008 | https://nyu.databrary.org/volume/1008 | 16 |
01376 | https://nyu.databrary.org/volume/1376 | 16 |
00956 | https://nyu.databrary.org/volume/956 | 14 |
00124 | https://nyu.databrary.org/volume/124 | 13 |
00217 | https://nyu.databrary.org/volume/217 | 13 |
00966 | https://nyu.databrary.org/volume/966 | 13 |
00015 | https://nyu.databrary.org/volume/15 | 12 |
00145 | https://nyu.databrary.org/volume/145 | 12 |
01442 | https://nyu.databrary.org/volume/1442 | 12 |
00143 | https://nyu.databrary.org/volume/143 | 11 |
00761 | https://nyu.databrary.org/volume/761 | 11 |
00323 | https://nyu.databrary.org/volume/323 | 10 |
01590 | https://nyu.databrary.org/volume/1590 | 10 |
00148 | https://nyu.databrary.org/volume/148 | 9 |
01459 | https://nyu.databrary.org/volume/1459 | 7 |
01663 | https://nyu.databrary.org/volume/1663 | 7 |
00351 | https://nyu.databrary.org/volume/351 | 6 |
01400 | https://nyu.databrary.org/volume/1400 | 6 |
01576 | https://nyu.databrary.org/volume/1576 | 6 |
01656 | https://nyu.databrary.org/volume/1656 | 6 |
01419 | https://nyu.databrary.org/volume/1419 | 5 |
00002 | https://nyu.databrary.org/volume/2 | 4 |
00254 | https://nyu.databrary.org/volume/254 | 4 |
01206 | https://nyu.databrary.org/volume/1206 | 4 |
00241 | https://nyu.databrary.org/volume/241 | 3 |
00881 | https://nyu.databrary.org/volume/881 | 3 |
00009 | https://nyu.databrary.org/volume/9 | 2 |
00760 | https://nyu.databrary.org/volume/760 | 2 |
00982 | https://nyu.databrary.org/volume/982 | 2 |
01023 | https://nyu.databrary.org/volume/1023 | 2 |
01362 | https://nyu.databrary.org/volume/1362 | 2 |
01596 | https://nyu.databrary.org/volume/1596 | 2 |
00116 | https://nyu.databrary.org/volume/116 | 1 |
00142 | https://nyu.databrary.org/volume/142 | 1 |
00876 | https://nyu.databrary.org/volume/876 | 1 |
01073 | https://nyu.databrary.org/volume/1073 | 1 |
01509 | https://nyu.databrary.org/volume/1509 | 1 |
01624 | https://nyu.databrary.org/volume/1624 | 1 |
01657 | https://nyu.databrary.org/volume/1657 | 1 |
01688 | https://nyu.databrary.org/volume/1688 | 1 |
01705 | https://nyu.databrary.org/volume/1705 | 1 |
There are n= 153 shared volumes reporting participant_gender
.
xtabs(formula = ~ participant_gender, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_gender | Freq |
---|---|
Female | 5355 |
Male | 5255 |
Non binary | 2 |
Non-binary | 1 |
Other | 1 |
Unknown | 1 |
Unknown or not reported | 1 |
<- demo_df |>
race_df ::filter(!is.na(participant_race)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
race_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00008 | https://nyu.databrary.org/volume/8 | 1318 |
00564 | https://nyu.databrary.org/volume/564 | 459 |
00011 | https://nyu.databrary.org/volume/11 | 236 |
00087 | https://nyu.databrary.org/volume/87 | 231 |
01020 | https://nyu.databrary.org/volume/1020 | 220 |
00359 | https://nyu.databrary.org/volume/359 | 216 |
00400 | https://nyu.databrary.org/volume/400 | 177 |
00322 | https://nyu.databrary.org/volume/322 | 173 |
00184 | https://nyu.databrary.org/volume/184 | 157 |
00149 | https://nyu.databrary.org/volume/149 | 155 |
01364 | https://nyu.databrary.org/volume/1364 | 151 |
00139 | https://nyu.databrary.org/volume/139 | 141 |
00030 | https://nyu.databrary.org/volume/30 | 134 |
00005 | https://nyu.databrary.org/volume/5 | 133 |
00088 | https://nyu.databrary.org/volume/88 | 132 |
00226 | https://nyu.databrary.org/volume/226 | 129 |
00989 | https://nyu.databrary.org/volume/989 | 127 |
01042 | https://nyu.databrary.org/volume/1042 | 122 |
00563 | https://nyu.databrary.org/volume/563 | 118 |
00089 | https://nyu.databrary.org/volume/89 | 114 |
00207 | https://nyu.databrary.org/volume/207 | 114 |
00271 | https://nyu.databrary.org/volume/271 | 113 |
00253 | https://nyu.databrary.org/volume/253 | 112 |
00150 | https://nyu.databrary.org/volume/150 | 110 |
01526 | https://nyu.databrary.org/volume/1526 | 110 |
00083 | https://nyu.databrary.org/volume/83 | 109 |
00988 | https://nyu.databrary.org/volume/988 | 109 |
00308 | https://nyu.databrary.org/volume/308 | 107 |
00070 | https://nyu.databrary.org/volume/70 | 105 |
00114 | https://nyu.databrary.org/volume/114 | 105 |
00269 | https://nyu.databrary.org/volume/269 | 105 |
00084 | https://nyu.databrary.org/volume/84 | 104 |
00140 | https://nyu.databrary.org/volume/140 | 97 |
00950 | https://nyu.databrary.org/volume/950 | 94 |
00162 | https://nyu.databrary.org/volume/162 | 93 |
00460 | https://nyu.databrary.org/volume/460 | 91 |
00152 | https://nyu.databrary.org/volume/152 | 84 |
01273 | https://nyu.databrary.org/volume/1273 | 82 |
00434 | https://nyu.databrary.org/volume/434 | 79 |
00868 | https://nyu.databrary.org/volume/868 | 77 |
01379 | https://nyu.databrary.org/volume/1379 | 76 |
01567 | https://nyu.databrary.org/volume/1567 | 74 |
00321 | https://nyu.databrary.org/volume/321 | 70 |
00004 | https://nyu.databrary.org/volume/4 | 67 |
00899 | https://nyu.databrary.org/volume/899 | 65 |
01436 | https://nyu.databrary.org/volume/1436 | 65 |
00136 | https://nyu.databrary.org/volume/136 | 62 |
00835 | https://nyu.databrary.org/volume/835 | 62 |
01103 | https://nyu.databrary.org/volume/1103 | 62 |
00350 | https://nyu.databrary.org/volume/350 | 58 |
00837 | https://nyu.databrary.org/volume/837 | 56 |
00854 | https://nyu.databrary.org/volume/854 | 56 |
00163 | https://nyu.databrary.org/volume/163 | 55 |
00007 | https://nyu.databrary.org/volume/7 | 54 |
00192 | https://nyu.databrary.org/volume/192 | 51 |
01312 | https://nyu.databrary.org/volume/1312 | 48 |
00827 | https://nyu.databrary.org/volume/827 | 47 |
00954 | https://nyu.databrary.org/volume/954 | 46 |
01026 | https://nyu.databrary.org/volume/1026 | 44 |
01108 | https://nyu.databrary.org/volume/1108 | 43 |
00941 | https://nyu.databrary.org/volume/941 | 42 |
00455 | https://nyu.databrary.org/volume/455 | 41 |
01128 | https://nyu.databrary.org/volume/1128 | 41 |
01448 | https://nyu.databrary.org/volume/1448 | 41 |
00108 | https://nyu.databrary.org/volume/108 | 40 |
01517 | https://nyu.databrary.org/volume/1517 | 39 |
00146 | https://nyu.databrary.org/volume/146 | 38 |
00123 | https://nyu.databrary.org/volume/123 | 37 |
00476 | https://nyu.databrary.org/volume/476 | 35 |
00218 | https://nyu.databrary.org/volume/218 | 34 |
00957 | https://nyu.databrary.org/volume/957 | 34 |
00979 | https://nyu.databrary.org/volume/979 | 34 |
01515 | https://nyu.databrary.org/volume/1515 | 34 |
00135 | https://nyu.databrary.org/volume/135 | 33 |
00174 | https://nyu.databrary.org/volume/174 | 33 |
00444 | https://nyu.databrary.org/volume/444 | 33 |
00592 | https://nyu.databrary.org/volume/592 | 33 |
01397 | https://nyu.databrary.org/volume/1397 | 33 |
00073 | https://nyu.databrary.org/volume/73 | 31 |
01066 | https://nyu.databrary.org/volume/1066 | 31 |
00943 | https://nyu.databrary.org/volume/943 | 30 |
01370 | https://nyu.databrary.org/volume/1370 | 30 |
00452 | https://nyu.databrary.org/volume/452 | 26 |
00821 | https://nyu.databrary.org/volume/821 | 26 |
01363 | https://nyu.databrary.org/volume/1363 | 25 |
01143 | https://nyu.databrary.org/volume/1143 | 24 |
00443 | https://nyu.databrary.org/volume/443 | 20 |
01365 | https://nyu.databrary.org/volume/1365 | 20 |
00132 | https://nyu.databrary.org/volume/132 | 19 |
01391 | https://nyu.databrary.org/volume/1391 | 19 |
01422 | https://nyu.databrary.org/volume/1422 | 19 |
00390 | https://nyu.databrary.org/volume/390 | 18 |
00996 | https://nyu.databrary.org/volume/996 | 18 |
00171 | https://nyu.databrary.org/volume/171 | 17 |
01481 | https://nyu.databrary.org/volume/1481 | 17 |
00169 | https://nyu.databrary.org/volume/169 | 16 |
01008 | https://nyu.databrary.org/volume/1008 | 16 |
01376 | https://nyu.databrary.org/volume/1376 | 16 |
00956 | https://nyu.databrary.org/volume/956 | 14 |
00124 | https://nyu.databrary.org/volume/124 | 13 |
00217 | https://nyu.databrary.org/volume/217 | 13 |
00966 | https://nyu.databrary.org/volume/966 | 13 |
00015 | https://nyu.databrary.org/volume/15 | 12 |
00145 | https://nyu.databrary.org/volume/145 | 12 |
01442 | https://nyu.databrary.org/volume/1442 | 12 |
00143 | https://nyu.databrary.org/volume/143 | 11 |
00761 | https://nyu.databrary.org/volume/761 | 11 |
00323 | https://nyu.databrary.org/volume/323 | 10 |
01590 | https://nyu.databrary.org/volume/1590 | 10 |
00148 | https://nyu.databrary.org/volume/148 | 9 |
01459 | https://nyu.databrary.org/volume/1459 | 7 |
01663 | https://nyu.databrary.org/volume/1663 | 7 |
01400 | https://nyu.databrary.org/volume/1400 | 6 |
01576 | https://nyu.databrary.org/volume/1576 | 6 |
01656 | https://nyu.databrary.org/volume/1656 | 6 |
00351 | https://nyu.databrary.org/volume/351 | 5 |
01419 | https://nyu.databrary.org/volume/1419 | 5 |
00002 | https://nyu.databrary.org/volume/2 | 4 |
00254 | https://nyu.databrary.org/volume/254 | 4 |
00241 | https://nyu.databrary.org/volume/241 | 3 |
00881 | https://nyu.databrary.org/volume/881 | 3 |
00009 | https://nyu.databrary.org/volume/9 | 2 |
00760 | https://nyu.databrary.org/volume/760 | 2 |
00982 | https://nyu.databrary.org/volume/982 | 2 |
01023 | https://nyu.databrary.org/volume/1023 | 2 |
01362 | https://nyu.databrary.org/volume/1362 | 2 |
01596 | https://nyu.databrary.org/volume/1596 | 2 |
00116 | https://nyu.databrary.org/volume/116 | 1 |
00142 | https://nyu.databrary.org/volume/142 | 1 |
00144 | https://nyu.databrary.org/volume/144 | 1 |
00876 | https://nyu.databrary.org/volume/876 | 1 |
01073 | https://nyu.databrary.org/volume/1073 | 1 |
01624 | https://nyu.databrary.org/volume/1624 | 1 |
01657 | https://nyu.databrary.org/volume/1657 | 1 |
01688 | https://nyu.databrary.org/volume/1688 | 1 |
01705 | https://nyu.databrary.org/volume/1705 | 1 |
There are n= 136 shared volumes reporting participant_race
.
xtabs(formula = ~ participant_race, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_race | Freq |
---|---|
1/2 White, 1/2 Asian | 1 |
African American and Puerto Rican | 1 |
African American and White | 1 |
American Indian or Alaska Native | 8 |
Arab | 1 |
Ashkenazi Jewish | 1 |
Asian | 1185 |
Asian and Hispanic or Latino | 1 |
Asian and White | 2 |
Biracial | 1 |
Black and Asian | 1 |
Black or African American | 1225 |
Black or African American AND Native Hawaiian or Pacific Islander | 1 |
Black or African American White | 1 |
Black or African American, White | 1 |
Black or African-American | 1 |
Black/Mixed | 1 |
Chose not to answer | 5 |
Chose Not To Asnwer | 1 |
Decline to State | 1 |
Did Not Answer | 3 |
Did not report | 1 |
Dominican American | 1 |
European White | 38 |
H | 7 |
Half Asian | 1 |
Hawaiian or other Pacific Islander | 1 |
Hawaiian or Pacific Islander | 1 |
Hispanic/Mixed Race | 1 |
I choose not to answer | 4 |
I choose not to answer this question | 3 |
Indian | 3 |
Latino, Native American, white | 1 |
Middle East | 1 |
Mixed | 3 |
More than one | 943 |
More than one race | 1 |
More than one race: Asian and White | 2 |
More than one race: North african and asian | 1 |
More than one race: White and Asian | 1 |
More than one race: White and middle eastern | 1 |
More than one race: White, Asian | 1 |
More than one race: White, Jewish, Latinx | 1 |
More than one race: White/ Asian | 1 |
More than one: Black or African and White | 1 |
Native American or Alaskan Native | 1 |
Native Hawaiian or Other Pacific Islander | 2 |
Nepall | 1 |
Not reported | 2 |
Not Reported | 2 |
Other | 58 |
Pacific Islander | 1 |
Refused | 3 |
South Asian | 14 |
South East Asian/ East Asian | 1 |
Unknown or not reported | 395 |
While | 1 |
White | 5143 |
White & Mexican American | 1 |
White and Afro Latina | 12 |
White and Asian | 7 |
White and Black | 1 |
White, American Indian or Alaskan Native, and Hispanic or Latino | 1 |
White, Asian | 1 |
White, Asian, Hawaiian | 1 |
White, Black/African American | 1 |
White/Asian | 1 |
White/Mixed | 1 |
White/Vietnamese | 1 |
<- demo_df |>
ethnicity_df ::filter(!is.na(participant_ethnicity)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
ethnicity_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00008 | https://nyu.databrary.org/volume/8 | 1318 |
00564 | https://nyu.databrary.org/volume/564 | 459 |
00011 | https://nyu.databrary.org/volume/11 | 236 |
00087 | https://nyu.databrary.org/volume/87 | 231 |
01020 | https://nyu.databrary.org/volume/1020 | 220 |
00359 | https://nyu.databrary.org/volume/359 | 216 |
00322 | https://nyu.databrary.org/volume/322 | 173 |
00184 | https://nyu.databrary.org/volume/184 | 158 |
01042 | https://nyu.databrary.org/volume/1042 | 155 |
00400 | https://nyu.databrary.org/volume/400 | 151 |
01364 | https://nyu.databrary.org/volume/1364 | 151 |
00139 | https://nyu.databrary.org/volume/139 | 142 |
00005 | https://nyu.databrary.org/volume/5 | 133 |
00088 | https://nyu.databrary.org/volume/88 | 132 |
00226 | https://nyu.databrary.org/volume/226 | 129 |
00989 | https://nyu.databrary.org/volume/989 | 121 |
00563 | https://nyu.databrary.org/volume/563 | 118 |
00089 | https://nyu.databrary.org/volume/89 | 114 |
00253 | https://nyu.databrary.org/volume/253 | 114 |
00207 | https://nyu.databrary.org/volume/207 | 113 |
00271 | https://nyu.databrary.org/volume/271 | 111 |
01526 | https://nyu.databrary.org/volume/1526 | 110 |
00083 | https://nyu.databrary.org/volume/83 | 109 |
00308 | https://nyu.databrary.org/volume/308 | 108 |
00114 | https://nyu.databrary.org/volume/114 | 105 |
00269 | https://nyu.databrary.org/volume/269 | 105 |
00988 | https://nyu.databrary.org/volume/988 | 105 |
00084 | https://nyu.databrary.org/volume/84 | 104 |
00140 | https://nyu.databrary.org/volume/140 | 97 |
00162 | https://nyu.databrary.org/volume/162 | 93 |
00460 | https://nyu.databrary.org/volume/460 | 91 |
00484 | https://nyu.databrary.org/volume/484 | 90 |
00152 | https://nyu.databrary.org/volume/152 | 84 |
01273 | https://nyu.databrary.org/volume/1273 | 82 |
00150 | https://nyu.databrary.org/volume/150 | 81 |
00950 | https://nyu.databrary.org/volume/950 | 80 |
00434 | https://nyu.databrary.org/volume/434 | 79 |
00868 | https://nyu.databrary.org/volume/868 | 77 |
01379 | https://nyu.databrary.org/volume/1379 | 76 |
01567 | https://nyu.databrary.org/volume/1567 | 74 |
00321 | https://nyu.databrary.org/volume/321 | 70 |
00004 | https://nyu.databrary.org/volume/4 | 67 |
00899 | https://nyu.databrary.org/volume/899 | 65 |
01436 | https://nyu.databrary.org/volume/1436 | 65 |
00136 | https://nyu.databrary.org/volume/136 | 62 |
00835 | https://nyu.databrary.org/volume/835 | 62 |
01103 | https://nyu.databrary.org/volume/1103 | 62 |
00070 | https://nyu.databrary.org/volume/70 | 58 |
00350 | https://nyu.databrary.org/volume/350 | 58 |
00007 | https://nyu.databrary.org/volume/7 | 55 |
00163 | https://nyu.databrary.org/volume/163 | 55 |
00854 | https://nyu.databrary.org/volume/854 | 54 |
00192 | https://nyu.databrary.org/volume/192 | 51 |
01312 | https://nyu.databrary.org/volume/1312 | 48 |
00827 | https://nyu.databrary.org/volume/827 | 47 |
00954 | https://nyu.databrary.org/volume/954 | 46 |
01026 | https://nyu.databrary.org/volume/1026 | 45 |
00941 | https://nyu.databrary.org/volume/941 | 42 |
00455 | https://nyu.databrary.org/volume/455 | 41 |
01108 | https://nyu.databrary.org/volume/1108 | 41 |
01128 | https://nyu.databrary.org/volume/1128 | 41 |
01448 | https://nyu.databrary.org/volume/1448 | 41 |
00108 | https://nyu.databrary.org/volume/108 | 40 |
01517 | https://nyu.databrary.org/volume/1517 | 39 |
00146 | https://nyu.databrary.org/volume/146 | 38 |
00123 | https://nyu.databrary.org/volume/123 | 37 |
00476 | https://nyu.databrary.org/volume/476 | 35 |
00218 | https://nyu.databrary.org/volume/218 | 34 |
00957 | https://nyu.databrary.org/volume/957 | 34 |
00979 | https://nyu.databrary.org/volume/979 | 34 |
01515 | https://nyu.databrary.org/volume/1515 | 34 |
00135 | https://nyu.databrary.org/volume/135 | 33 |
00444 | https://nyu.databrary.org/volume/444 | 33 |
01397 | https://nyu.databrary.org/volume/1397 | 33 |
00149 | https://nyu.databrary.org/volume/149 | 32 |
00073 | https://nyu.databrary.org/volume/73 | 31 |
00174 | https://nyu.databrary.org/volume/174 | 31 |
01066 | https://nyu.databrary.org/volume/1066 | 31 |
00943 | https://nyu.databrary.org/volume/943 | 30 |
01370 | https://nyu.databrary.org/volume/1370 | 30 |
00452 | https://nyu.databrary.org/volume/452 | 26 |
00821 | https://nyu.databrary.org/volume/821 | 26 |
01363 | https://nyu.databrary.org/volume/1363 | 25 |
01143 | https://nyu.databrary.org/volume/1143 | 24 |
00030 | https://nyu.databrary.org/volume/30 | 23 |
00443 | https://nyu.databrary.org/volume/443 | 20 |
01365 | https://nyu.databrary.org/volume/1365 | 20 |
00132 | https://nyu.databrary.org/volume/132 | 19 |
01391 | https://nyu.databrary.org/volume/1391 | 19 |
01422 | https://nyu.databrary.org/volume/1422 | 19 |
00390 | https://nyu.databrary.org/volume/390 | 18 |
00996 | https://nyu.databrary.org/volume/996 | 18 |
00171 | https://nyu.databrary.org/volume/171 | 17 |
01481 | https://nyu.databrary.org/volume/1481 | 17 |
00169 | https://nyu.databrary.org/volume/169 | 16 |
01008 | https://nyu.databrary.org/volume/1008 | 16 |
01376 | https://nyu.databrary.org/volume/1376 | 16 |
00956 | https://nyu.databrary.org/volume/956 | 14 |
00124 | https://nyu.databrary.org/volume/124 | 13 |
00217 | https://nyu.databrary.org/volume/217 | 13 |
00966 | https://nyu.databrary.org/volume/966 | 13 |
00015 | https://nyu.databrary.org/volume/15 | 12 |
00145 | https://nyu.databrary.org/volume/145 | 12 |
01442 | https://nyu.databrary.org/volume/1442 | 12 |
00143 | https://nyu.databrary.org/volume/143 | 11 |
00761 | https://nyu.databrary.org/volume/761 | 11 |
00323 | https://nyu.databrary.org/volume/323 | 10 |
01590 | https://nyu.databrary.org/volume/1590 | 10 |
00148 | https://nyu.databrary.org/volume/148 | 9 |
01459 | https://nyu.databrary.org/volume/1459 | 7 |
01663 | https://nyu.databrary.org/volume/1663 | 7 |
01400 | https://nyu.databrary.org/volume/1400 | 6 |
01576 | https://nyu.databrary.org/volume/1576 | 6 |
01656 | https://nyu.databrary.org/volume/1656 | 6 |
00351 | https://nyu.databrary.org/volume/351 | 5 |
01419 | https://nyu.databrary.org/volume/1419 | 5 |
00002 | https://nyu.databrary.org/volume/2 | 4 |
00254 | https://nyu.databrary.org/volume/254 | 4 |
00241 | https://nyu.databrary.org/volume/241 | 3 |
00881 | https://nyu.databrary.org/volume/881 | 3 |
00009 | https://nyu.databrary.org/volume/9 | 2 |
00760 | https://nyu.databrary.org/volume/760 | 2 |
00982 | https://nyu.databrary.org/volume/982 | 2 |
01023 | https://nyu.databrary.org/volume/1023 | 2 |
01362 | https://nyu.databrary.org/volume/1362 | 2 |
01596 | https://nyu.databrary.org/volume/1596 | 2 |
00116 | https://nyu.databrary.org/volume/116 | 1 |
00142 | https://nyu.databrary.org/volume/142 | 1 |
00144 | https://nyu.databrary.org/volume/144 | 1 |
00876 | https://nyu.databrary.org/volume/876 | 1 |
01073 | https://nyu.databrary.org/volume/1073 | 1 |
01624 | https://nyu.databrary.org/volume/1624 | 1 |
01657 | https://nyu.databrary.org/volume/1657 | 1 |
01688 | https://nyu.databrary.org/volume/1688 | 1 |
01705 | https://nyu.databrary.org/volume/1705 | 1 |
There are n= 135 shared volumes reporting participant_ethnicity
.
xtabs(formula = ~ participant_ethnicity, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_ethnicity | Freq |
---|---|
Asian | 1 |
Chinese | 221 |
Choose not to answer | 2 |
Chose not to answer | 3 |
Chose Not To Answer | 1 |
Decline to State | 2 |
did not answer | 1 |
Did Not Answer | 3 |
Dominican | 393 |
Hispanic or Latino | 1180 |
Hispanic or Latinx | 3 |
I choose not to answer this question | 7 |
Indigenous | 1 |
Mexican | 357 |
More than one | 1 |
Non-Hispanic | 5 |
Not Hispanic or Latino | 5613 |
Not Hispanic or Latinoo | 1 |
Not Hispanic or Latinx | 2 |
Not Hispanic/Latinx | 1 |
Not indigenous | 2 |
Not reported | 3 |
Not Reported | 4 |
Refused | 3 |
Unknown or not reported | 976 |
<- demo_df |>
language_df ::filter(!is.na(participant_language)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
language_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00008 | https://nyu.databrary.org/volume/8 | 1318 |
00011 | https://nyu.databrary.org/volume/11 | 468 |
00564 | https://nyu.databrary.org/volume/564 | 459 |
00090 | https://nyu.databrary.org/volume/90 | 312 |
00088 | https://nyu.databrary.org/volume/88 | 262 |
00087 | https://nyu.databrary.org/volume/87 | 231 |
01020 | https://nyu.databrary.org/volume/1020 | 220 |
00359 | https://nyu.databrary.org/volume/359 | 216 |
00400 | https://nyu.databrary.org/volume/400 | 182 |
00460 | https://nyu.databrary.org/volume/460 | 175 |
00322 | https://nyu.databrary.org/volume/322 | 173 |
00184 | https://nyu.databrary.org/volume/184 | 161 |
01042 | https://nyu.databrary.org/volume/1042 | 161 |
01364 | https://nyu.databrary.org/volume/1364 | 161 |
00149 | https://nyu.databrary.org/volume/149 | 155 |
00226 | https://nyu.databrary.org/volume/226 | 129 |
00989 | https://nyu.databrary.org/volume/989 | 127 |
00207 | https://nyu.databrary.org/volume/207 | 118 |
00563 | https://nyu.databrary.org/volume/563 | 118 |
00253 | https://nyu.databrary.org/volume/253 | 115 |
00089 | https://nyu.databrary.org/volume/89 | 114 |
00150 | https://nyu.databrary.org/volume/150 | 111 |
01526 | https://nyu.databrary.org/volume/1526 | 111 |
00083 | https://nyu.databrary.org/volume/83 | 109 |
00308 | https://nyu.databrary.org/volume/308 | 109 |
00988 | https://nyu.databrary.org/volume/988 | 109 |
00114 | https://nyu.databrary.org/volume/114 | 105 |
00269 | https://nyu.databrary.org/volume/269 | 105 |
00084 | https://nyu.databrary.org/volume/84 | 104 |
00140 | https://nyu.databrary.org/volume/140 | 97 |
00950 | https://nyu.databrary.org/volume/950 | 96 |
00162 | https://nyu.databrary.org/volume/162 | 93 |
00152 | https://nyu.databrary.org/volume/152 | 84 |
01273 | https://nyu.databrary.org/volume/1273 | 82 |
00434 | https://nyu.databrary.org/volume/434 | 79 |
00868 | https://nyu.databrary.org/volume/868 | 77 |
01379 | https://nyu.databrary.org/volume/1379 | 76 |
01567 | https://nyu.databrary.org/volume/1567 | 74 |
00321 | https://nyu.databrary.org/volume/321 | 71 |
01436 | https://nyu.databrary.org/volume/1436 | 67 |
00899 | https://nyu.databrary.org/volume/899 | 65 |
00136 | https://nyu.databrary.org/volume/136 | 62 |
00835 | https://nyu.databrary.org/volume/835 | 62 |
01103 | https://nyu.databrary.org/volume/1103 | 62 |
00837 | https://nyu.databrary.org/volume/837 | 59 |
00854 | https://nyu.databrary.org/volume/854 | 59 |
00350 | https://nyu.databrary.org/volume/350 | 58 |
01312 | https://nyu.databrary.org/volume/1312 | 48 |
00827 | https://nyu.databrary.org/volume/827 | 47 |
00954 | https://nyu.databrary.org/volume/954 | 46 |
01026 | https://nyu.databrary.org/volume/1026 | 46 |
01108 | https://nyu.databrary.org/volume/1108 | 44 |
00941 | https://nyu.databrary.org/volume/941 | 42 |
01448 | https://nyu.databrary.org/volume/1448 | 41 |
01517 | https://nyu.databrary.org/volume/1517 | 39 |
00123 | https://nyu.databrary.org/volume/123 | 37 |
00476 | https://nyu.databrary.org/volume/476 | 35 |
00218 | https://nyu.databrary.org/volume/218 | 34 |
00592 | https://nyu.databrary.org/volume/592 | 34 |
00957 | https://nyu.databrary.org/volume/957 | 34 |
00979 | https://nyu.databrary.org/volume/979 | 34 |
01515 | https://nyu.databrary.org/volume/1515 | 34 |
00075 | https://nyu.databrary.org/volume/75 | 33 |
00444 | https://nyu.databrary.org/volume/444 | 33 |
01397 | https://nyu.databrary.org/volume/1397 | 33 |
00073 | https://nyu.databrary.org/volume/73 | 31 |
01066 | https://nyu.databrary.org/volume/1066 | 31 |
00943 | https://nyu.databrary.org/volume/943 | 30 |
01370 | https://nyu.databrary.org/volume/1370 | 30 |
01365 | https://nyu.databrary.org/volume/1365 | 28 |
00452 | https://nyu.databrary.org/volume/452 | 26 |
00821 | https://nyu.databrary.org/volume/821 | 26 |
01363 | https://nyu.databrary.org/volume/1363 | 26 |
01143 | https://nyu.databrary.org/volume/1143 | 24 |
00132 | https://nyu.databrary.org/volume/132 | 19 |
00996 | https://nyu.databrary.org/volume/996 | 19 |
01391 | https://nyu.databrary.org/volume/1391 | 19 |
01422 | https://nyu.databrary.org/volume/1422 | 19 |
00390 | https://nyu.databrary.org/volume/390 | 18 |
00171 | https://nyu.databrary.org/volume/171 | 17 |
01376 | https://nyu.databrary.org/volume/1376 | 17 |
01481 | https://nyu.databrary.org/volume/1481 | 17 |
00169 | https://nyu.databrary.org/volume/169 | 16 |
00710 | https://nyu.databrary.org/volume/710 | 16 |
01008 | https://nyu.databrary.org/volume/1008 | 16 |
00956 | https://nyu.databrary.org/volume/956 | 14 |
00124 | https://nyu.databrary.org/volume/124 | 13 |
00217 | https://nyu.databrary.org/volume/217 | 13 |
00966 | https://nyu.databrary.org/volume/966 | 13 |
00145 | https://nyu.databrary.org/volume/145 | 12 |
01442 | https://nyu.databrary.org/volume/1442 | 12 |
00143 | https://nyu.databrary.org/volume/143 | 11 |
00761 | https://nyu.databrary.org/volume/761 | 11 |
00323 | https://nyu.databrary.org/volume/323 | 10 |
01590 | https://nyu.databrary.org/volume/1590 | 10 |
00148 | https://nyu.databrary.org/volume/148 | 9 |
01459 | https://nyu.databrary.org/volume/1459 | 7 |
01663 | https://nyu.databrary.org/volume/1663 | 7 |
01400 | https://nyu.databrary.org/volume/1400 | 6 |
01576 | https://nyu.databrary.org/volume/1576 | 6 |
01656 | https://nyu.databrary.org/volume/1656 | 6 |
01419 | https://nyu.databrary.org/volume/1419 | 5 |
00254 | https://nyu.databrary.org/volume/254 | 4 |
00194 | https://nyu.databrary.org/volume/194 | 3 |
00241 | https://nyu.databrary.org/volume/241 | 3 |
00881 | https://nyu.databrary.org/volume/881 | 3 |
00982 | https://nyu.databrary.org/volume/982 | 3 |
00009 | https://nyu.databrary.org/volume/9 | 2 |
00116 | https://nyu.databrary.org/volume/116 | 2 |
00760 | https://nyu.databrary.org/volume/760 | 2 |
01023 | https://nyu.databrary.org/volume/1023 | 2 |
01362 | https://nyu.databrary.org/volume/1362 | 2 |
01596 | https://nyu.databrary.org/volume/1596 | 2 |
00142 | https://nyu.databrary.org/volume/142 | 1 |
00876 | https://nyu.databrary.org/volume/876 | 1 |
01073 | https://nyu.databrary.org/volume/1073 | 1 |
01624 | https://nyu.databrary.org/volume/1624 | 1 |
01657 | https://nyu.databrary.org/volume/1657 | 1 |
01688 | https://nyu.databrary.org/volume/1688 | 1 |
01705 | https://nyu.databrary.org/volume/1705 | 1 |
There are n= 120 shared volumes reporting participant_language
.
xtabs(formula = ~ participant_language, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_language | Freq |
---|---|
Arabic | 1 |
Arabic, English | 2 |
Bengali, English | 1 |
Bulgarian, English, Spanish | 2 |
Cantonese | 118 |
Cantonese - in Mandarin | 56 |
Catalan | 1 |
Chinese | 1 |
Engish | 1 |
Englidh | 1 |
english | 2 |
English | 6759 |
English - ESL | 9 |
English & Arabic | 1 |
English & French | 1 |
English & Greek | 2 |
English & Japanese | 1 |
English & Spanish | 4 |
English & Spanish & German | 1 |
English & Swedish | 1 |
English & Tagalog | 1 |
English 100% | 14 |
English 50%, Russian 50% | 1 |
English 90%, German 10% | 1 |
English 90%, Vietnamese 5%, Chinese 5% | 1 |
English and Bengali | 1 |
English and Malayalam | 1 |
English and Mandarin | 1 |
English and Spanish | 6 |
English Chinese | 4 |
English Danish | 1 |
English German | 1 |
English Mandarin | 1 |
English Other | 1 |
English, Japanese | 1 |
English, Albanian | 2 |
English, Arabic | 6 |
English, ASL | 1 |
English, Bosnian, Spanish | 9 |
English, Bulgarian, French | 1 |
English, Cantonese | 14 |
English, Cantonese, Japanese | 1 |
English, Cantonese, Mandarin | 1 |
English, Catalan | 2 |
English, Catalonian, Spanish, Tamil | 3 |
English, Chinese | 13 |
English, Chinese, Cantanese | 1 |
English, Chinese, Portuguese | 1 |
English, Danish | 2 |
English, Dutch, Mandarin | 2 |
English, Estonian | 1 |
English, Farsi | 1 |
English, Filipino | 11 |
English, French | 18 |
English, French, Bulgarian | 1 |
English, French, Spanish | 7 |
English, French, Thai | 1 |
English, German | 7 |
English, German, Spanish | 6 |
English, Greek | 7 |
English, Hebrew | 1 |
English, Hebrew, Spanish | 1 |
English, Hindi | 4 |
English, Hindi, Punjab | 2 |
English, Hindi, Spanish | 1 |
English, Hindi, Urdu, Punjabi, Spanish | 1 |
English, Hungarian | 3 |
English, Ilonggo | 2 |
English, Italian | 17 |
English, Italian, French | 3 |
English, Italian, Spanish | 4 |
English, Japanese | 5 |
English, Japanese, Spanish | 3 |
English, Kannada | 11 |
English, Korean | 10 |
English, Korean, Spanish | 1 |
English, Mandarin | 13 |
English, Mandarin, Cantonese | 3 |
English, Mandarin, Cantonese, French | 2 |
English, Mandarin, Norwegian | 1 |
English, Marwadi | 4 |
English, Nepal | 1 |
English, Norwegian, Mandarin | 1 |
English, Other | 2 |
English, Polish | 8 |
English, Polish, French | 1 |
English, Polish, Hebrew | 2 |
English, Polish, Spanish | 1 |
English, Portuguese | 11 |
English, Russian | 17 |
English, Russian, Spanish | 1 |
English, Serbian, Italian | 1 |
English, Sign | 1 |
English, some Spanish | 2 |
English, Spanish | 262 |
English, Spanish, Arabic | 1 |
English, Spanish, Farsi | 2 |
English, Spanish, French | 5 |
English, Spanish, Hebrew | 1 |
English, Spanish, Hindi | 12 |
English, Spanish, Italian | 1 |
English, Spanish, Polish | 1 |
English, Spanish, Portuguese | 1 |
English, Swedish | 6 |
English, Swedish, Spanish, Italian, French, Mandarin | 1 |
English, Sweedish | 1 |
English, Tagalog | 7 |
English, Tegalog | 1 |
English, Thai | 6 |
English, Thai, French | 1 |
English, Thai, Spanish | 1 |
English, Turkish | 4 |
English, Ukranian, Cantonese | 13 |
English, Urdu | 2 |
English, Vietnamese, Korean | 1 |
English,Spanish | 2 |
English; Spanish | 2 |
Enlgish | 1 |
French | 2 |
French & English | 1 |
French 70%, English 25%, Spanish 5% | 1 |
French, English | 2 |
French, English, Russian | 1 |
French, Spanish, English | 1 |
Fulanu, English | 1 |
Greek, English | 1 |
Hebrew, Russian, English | 7 |
Japanese | 2 |
Japanese, English | 1 |
Kazakh, English | 1 |
Korean | 13 |
Korean, English, Spanish | 24 |
Mandarin | 51 |
Mandarin, Cantonese, English | 1 |
Mandarin, English | 6 |
None | 1 |
other | 1 |
Other | 2 |
Polish | 2 |
Polish, English, Spanish | 1 |
Portuguese, English | 2 |
Russian | 2 |
Russian, English | 1 |
Russian, English, Ukrainian | 3 |
spanish | 126 |
Spanish | 596 |
Spanish, English | 23 |
Spanish, English, Hebrew | 2 |
Spanish, German | 1 |
Tajik | 348 |
Tseltal | 3 |
Turkish, English | 2 |
Ukranian, English, Cantonese, Chinese | 1 |
Unknown | 71 |
<- demo_df |>
participant_pregnancy_term_df ::filter(!is.na(participant_pregnancy_term)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
participant_pregnancy_term_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00564 | https://nyu.databrary.org/volume/564 | 459 |
00087 | https://nyu.databrary.org/volume/87 | 231 |
00322 | https://nyu.databrary.org/volume/322 | 173 |
00005 | https://nyu.databrary.org/volume/5 | 133 |
00114 | https://nyu.databrary.org/volume/114 | 105 |
00140 | https://nyu.databrary.org/volume/140 | 97 |
00162 | https://nyu.databrary.org/volume/162 | 93 |
00868 | https://nyu.databrary.org/volume/868 | 77 |
00004 | https://nyu.databrary.org/volume/4 | 67 |
00136 | https://nyu.databrary.org/volume/136 | 62 |
00163 | https://nyu.databrary.org/volume/163 | 55 |
00827 | https://nyu.databrary.org/volume/827 | 47 |
01026 | https://nyu.databrary.org/volume/1026 | 46 |
00455 | https://nyu.databrary.org/volume/455 | 41 |
00123 | https://nyu.databrary.org/volume/123 | 37 |
00476 | https://nyu.databrary.org/volume/476 | 35 |
00135 | https://nyu.databrary.org/volume/135 | 33 |
00132 | https://nyu.databrary.org/volume/132 | 19 |
00124 | https://nyu.databrary.org/volume/124 | 13 |
00323 | https://nyu.databrary.org/volume/323 | 10 |
00351 | https://nyu.databrary.org/volume/351 | 6 |
There are 21 shared volumes reporting participant_pregnancy_term
.
xtabs(formula = ~ participant_pregnancy_term, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_pregnancy_term | Freq |
---|---|
30 weeks | 2 |
34 weeks | 1 |
36 weeks | 1 |
37 | 1 |
37 weeks | 2 |
37.5 weeks | 1 |
38 weeks | 2 |
39 weeks | 6 |
41 weeks | 2 |
42 weeks | 1 |
Full term | 1807 |
Fullterm | 1 |
Not full term | 2 |
Preterm | 7 |
Unknown | 3 |
<- demo_df |>
participant_birth_weight_df ::filter(!is.na(participant_birth_weight)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
participant_birth_weight_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00827 | https://nyu.databrary.org/volume/827 | 41 |
00455 | https://nyu.databrary.org/volume/455 | 35 |
00444 | https://nyu.databrary.org/volume/444 | 19 |
There are n= 3 shared volumes reporting participant_birth_weight
.
xtabs(formula = ~ participant_birth_weight, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_birth_weight | Freq |
---|---|
10.3 | 1 |
2.7 | 1 |
3.38 | 1 |
4.11 | 1 |
5.11 | 1 |
5.3 | 1 |
5.4 | 2 |
5.7 | 1 |
5.8 | 2 |
5.9 | 1 |
6 | 2 |
6.1 | 1 |
6.10 | 1 |
6.15 | 1 |
6.25 | 1 |
6.3 | 2 |
6.375 | 1 |
6.4 | 1 |
6.44 | 1 |
6.5 | 1 |
6.7 | 3 |
6.75 | 1 |
6.8 | 1 |
6.9 | 2 |
7 | 6 |
7.0 | 3 |
7.1 | 4 |
7.11 | 1 |
7.12 | 1 |
7.2 | 3 |
7.25 | 3 |
7.31 | 1 |
7.375 | 1 |
7.4 | 3 |
7.56 | 1 |
7.6 | 4 |
7.7 | 3 |
7.75 | 1 |
7.76 | 1 |
7.8 | 2 |
7.875 | 1 |
7.9 | 1 |
8 | 3 |
8.0 | 1 |
8.125 | 1 |
8.13 | 1 |
8.14 | 1 |
8.15 | 1 |
8.2 | 1 |
8.25 | 1 |
8.3 | 2 |
8.375 | 2 |
8.4 | 1 |
8.44 | 1 |
8.5 | 1 |
8.56 | 1 |
8.6 | 1 |
8.75 | 1 |
9 | 3 |
9.44 | 1 |
|>
demo_df ::ggplot() +
ggplot2::aes(x = as.numeric(participant_birth_weight)) +
ggplot2::geom_histogram(bins = 15) ggplot2
Warning: Removed 11599 rows containing non-finite outside the scale range
(`stat_bin()`).
<- demo_df |>
participant_disability_df ::filter(!is.na(participant_disability)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
participant_disability_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00011 | https://nyu.databrary.org/volume/11 | 468 |
00564 | https://nyu.databrary.org/volume/564 | 459 |
00088 | https://nyu.databrary.org/volume/88 | 262 |
00087 | https://nyu.databrary.org/volume/87 | 231 |
01020 | https://nyu.databrary.org/volume/1020 | 220 |
00359 | https://nyu.databrary.org/volume/359 | 216 |
00400 | https://nyu.databrary.org/volume/400 | 182 |
00460 | https://nyu.databrary.org/volume/460 | 175 |
00322 | https://nyu.databrary.org/volume/322 | 173 |
01042 | https://nyu.databrary.org/volume/1042 | 161 |
00005 | https://nyu.databrary.org/volume/5 | 133 |
00226 | https://nyu.databrary.org/volume/226 | 129 |
00989 | https://nyu.databrary.org/volume/989 | 127 |
00563 | https://nyu.databrary.org/volume/563 | 118 |
00271 | https://nyu.databrary.org/volume/271 | 115 |
00089 | https://nyu.databrary.org/volume/89 | 114 |
01526 | https://nyu.databrary.org/volume/1526 | 111 |
00083 | https://nyu.databrary.org/volume/83 | 109 |
00308 | https://nyu.databrary.org/volume/308 | 109 |
00988 | https://nyu.databrary.org/volume/988 | 109 |
00114 | https://nyu.databrary.org/volume/114 | 105 |
00084 | https://nyu.databrary.org/volume/84 | 104 |
00140 | https://nyu.databrary.org/volume/140 | 97 |
00950 | https://nyu.databrary.org/volume/950 | 96 |
00162 | https://nyu.databrary.org/volume/162 | 93 |
00152 | https://nyu.databrary.org/volume/152 | 84 |
01273 | https://nyu.databrary.org/volume/1273 | 82 |
00434 | https://nyu.databrary.org/volume/434 | 79 |
00868 | https://nyu.databrary.org/volume/868 | 77 |
01379 | https://nyu.databrary.org/volume/1379 | 76 |
01567 | https://nyu.databrary.org/volume/1567 | 74 |
00321 | https://nyu.databrary.org/volume/321 | 71 |
00004 | https://nyu.databrary.org/volume/4 | 67 |
01436 | https://nyu.databrary.org/volume/1436 | 67 |
00136 | https://nyu.databrary.org/volume/136 | 62 |
00835 | https://nyu.databrary.org/volume/835 | 62 |
00837 | https://nyu.databrary.org/volume/837 | 59 |
00854 | https://nyu.databrary.org/volume/854 | 59 |
00350 | https://nyu.databrary.org/volume/350 | 58 |
00007 | https://nyu.databrary.org/volume/7 | 55 |
00163 | https://nyu.databrary.org/volume/163 | 55 |
00192 | https://nyu.databrary.org/volume/192 | 51 |
01312 | https://nyu.databrary.org/volume/1312 | 48 |
00827 | https://nyu.databrary.org/volume/827 | 47 |
00954 | https://nyu.databrary.org/volume/954 | 46 |
01026 | https://nyu.databrary.org/volume/1026 | 46 |
01108 | https://nyu.databrary.org/volume/1108 | 44 |
00941 | https://nyu.databrary.org/volume/941 | 42 |
01448 | https://nyu.databrary.org/volume/1448 | 41 |
00123 | https://nyu.databrary.org/volume/123 | 37 |
00476 | https://nyu.databrary.org/volume/476 | 35 |
00592 | https://nyu.databrary.org/volume/592 | 34 |
00957 | https://nyu.databrary.org/volume/957 | 34 |
00979 | https://nyu.databrary.org/volume/979 | 34 |
00444 | https://nyu.databrary.org/volume/444 | 33 |
00943 | https://nyu.databrary.org/volume/943 | 30 |
01365 | https://nyu.databrary.org/volume/1365 | 28 |
00452 | https://nyu.databrary.org/volume/452 | 26 |
00821 | https://nyu.databrary.org/volume/821 | 26 |
01363 | https://nyu.databrary.org/volume/1363 | 26 |
01143 | https://nyu.databrary.org/volume/1143 | 24 |
00132 | https://nyu.databrary.org/volume/132 | 19 |
00390 | https://nyu.databrary.org/volume/390 | 18 |
01376 | https://nyu.databrary.org/volume/1376 | 17 |
00169 | https://nyu.databrary.org/volume/169 | 16 |
00956 | https://nyu.databrary.org/volume/956 | 14 |
00124 | https://nyu.databrary.org/volume/124 | 13 |
00217 | https://nyu.databrary.org/volume/217 | 13 |
00145 | https://nyu.databrary.org/volume/145 | 12 |
01442 | https://nyu.databrary.org/volume/1442 | 12 |
00143 | https://nyu.databrary.org/volume/143 | 11 |
00761 | https://nyu.databrary.org/volume/761 | 11 |
00323 | https://nyu.databrary.org/volume/323 | 10 |
00148 | https://nyu.databrary.org/volume/148 | 9 |
00351 | https://nyu.databrary.org/volume/351 | 6 |
01419 | https://nyu.databrary.org/volume/1419 | 5 |
00194 | https://nyu.databrary.org/volume/194 | 3 |
00241 | https://nyu.databrary.org/volume/241 | 3 |
00881 | https://nyu.databrary.org/volume/881 | 3 |
00009 | https://nyu.databrary.org/volume/9 | 2 |
00116 | https://nyu.databrary.org/volume/116 | 2 |
01023 | https://nyu.databrary.org/volume/1023 | 2 |
00142 | https://nyu.databrary.org/volume/142 | 1 |
00876 | https://nyu.databrary.org/volume/876 | 1 |
01073 | https://nyu.databrary.org/volume/1073 | 1 |
01688 | https://nyu.databrary.org/volume/1688 | 1 |
01705 | https://nyu.databrary.org/volume/1705 | 1 |
There are n= 87 shared volumes reporting participant_disability
.
xtabs(formula = ~ participant_disability, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_disability | Freq |
---|---|
Acid Reflux | 1 |
ASD | 225 |
atypical | 3 |
Atypical | 1 |
atypical hand | 1 |
baby did not pass hearing test for the right ear when he was born | 1 |
Beckwith-Weidemenn Syndrome (no delay) | 1 |
CMT | 1 |
delayed speech | 1 |
evaluated for speech | 2 |
gross motor delay | 1 |
Hip arthritis | 1 |
No | 23 |
none | 3 |
Sprained ankle (3 wks ago) | 1 |
ty | 1 |
typical | 5805 |
Typical | 162 |
Unknown | 7 |
<- demo_df |>
participant_country_df ::filter(!is.na(participant_country)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
participant_country_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00564 | https://nyu.databrary.org/volume/564 | 459 |
00390 | https://nyu.databrary.org/volume/390 | 18 |
There are n= 2 shared volumes reporting participant_country
.
xtabs(formula = ~ participant_country, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_country | Freq |
---|---|
ARG | 3 |
Australia | 224 |
CA | 3 |
MX | 3 |
UK | 3 |
US | 241 |
<- demo_df |>
participant_state_df ::filter(!is.na(participant_state)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
participant_state_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00184 | https://nyu.databrary.org/volume/184 | 161 |
00149 | https://nyu.databrary.org/volume/149 | 155 |
00207 | https://nyu.databrary.org/volume/207 | 115 |
00253 | https://nyu.databrary.org/volume/253 | 113 |
00150 | https://nyu.databrary.org/volume/150 | 109 |
00269 | https://nyu.databrary.org/volume/269 | 105 |
00073 | https://nyu.databrary.org/volume/73 | 31 |
00171 | https://nyu.databrary.org/volume/171 | 17 |
00390 | https://nyu.databrary.org/volume/390 | 15 |
There are n= 9 shared volumes reporting participant_state
.
xtabs(formula = ~ participant_state, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_state | Freq |
---|---|
Bs.As | 1 |
Bs.As. | 2 |
CA | 3 |
CP | 3 |
MB | 3 |
NJ | 2 |
NY | 3 |
PA | 804 |
<- demo_df |>
participant_setting_df ::filter(!is.na(participant_setting)) |>
dplyr::group_by(vol_id, vol_url) |>
dplyr::summarize(n_sessions = dplyr::n()) |>
dplyr::ungroup() |>
dplyr::mutate(n_vols_w_demo = dplyr::n()) dplyr
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
|>
participant_setting_df ::select(vol_id, vol_url, n_sessions) |>
dplyr::arrange(desc(n_sessions)) |>
dplyr::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
vol_id | vol_url | n_sessions |
---|---|---|
00322 | https://nyu.databrary.org/volume/322 | 173 |
00073 | https://nyu.databrary.org/volume/73 | 31 |
There are n= 2 shared volumes reporting participant_setting
.
xtabs(formula = ~ participant_setting, data = demo_df) |>
::kable("html") |>
knitr::kable_styling() |>
kableExtra::scroll_box(width = "100%", height = "300px") kableExtra
participant_setting | Freq |
---|---|
Lab | 204 |