Demographics

Modified

September 3, 2024

This page summarizes the demographic characteristics of participants in shared volumes on Databrary.

Code
targets::tar_load(volume_demog_df, store = "../_targets")
demo_df <- volume_demog_df |>
  dplyr::distinct()

Owner data

All owners.

Note

TODO: Fix importing of owners data.

Code
owner_df <- load_owner_csvs("csv", fn_suffix = "-owners")  
Note

The session-level CSV data are stored in a local directory that is not synched with GitHub. To generate the report, one must generate and save the data locally.

Overall

Databrary has demographic data for ~ n= 10725 individual participant-sessions. This number is an underestimate because the number of unshared volumes is 3-4x the number of shared volumes.

Code
demo_df <- volume_demog_df |>
  dplyr::mutate(vol_url = paste0("https://nyu.databrary.org/volume/", as.numeric(vol_id)))

Age

Volumes and session

Code
age_df <- demo_df |>
  dplyr::filter(!is.na(age_days)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
age_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00008 https://nyu.databrary.org/volume/8 1112
00564 https://nyu.databrary.org/volume/564 459
00090 https://nyu.databrary.org/volume/90 312
00739 https://nyu.databrary.org/volume/739 295
00011 https://nyu.databrary.org/volume/11 236
00087 https://nyu.databrary.org/volume/87 231
01020 https://nyu.databrary.org/volume/1020 220
00322 https://nyu.databrary.org/volume/322 173
00359 https://nyu.databrary.org/volume/359 169
01042 https://nyu.databrary.org/volume/1042 161
01364 https://nyu.databrary.org/volume/1364 157
00030 https://nyu.databrary.org/volume/30 155
01075 https://nyu.databrary.org/volume/1075 138
00005 https://nyu.databrary.org/volume/5 133
00088 https://nyu.databrary.org/volume/88 132
00184 https://nyu.databrary.org/volume/184 129
00226 https://nyu.databrary.org/volume/226 129
00989 https://nyu.databrary.org/volume/989 127
00563 https://nyu.databrary.org/volume/563 118
00271 https://nyu.databrary.org/volume/271 115
00089 https://nyu.databrary.org/volume/89 114
01526 https://nyu.databrary.org/volume/1526 111
00083 https://nyu.databrary.org/volume/83 109
00114 https://nyu.databrary.org/volume/114 105
00084 https://nyu.databrary.org/volume/84 104
00988 https://nyu.databrary.org/volume/988 101
00140 https://nyu.databrary.org/volume/140 97
00162 https://nyu.databrary.org/volume/162 93
00070 https://nyu.databrary.org/volume/70 91
00460 https://nyu.databrary.org/volume/460 91
00152 https://nyu.databrary.org/volume/152 84
01273 https://nyu.databrary.org/volume/1273 82
00484 https://nyu.databrary.org/volume/484 81
00434 https://nyu.databrary.org/volume/434 79
00868 https://nyu.databrary.org/volume/868 77
00308 https://nyu.databrary.org/volume/308 76
01379 https://nyu.databrary.org/volume/1379 76
01567 https://nyu.databrary.org/volume/1567 74
00253 https://nyu.databrary.org/volume/253 73
00207 https://nyu.databrary.org/volume/207 71
00269 https://nyu.databrary.org/volume/269 71
00321 https://nyu.databrary.org/volume/321 71
00081 https://nyu.databrary.org/volume/81 69
00004 https://nyu.databrary.org/volume/4 67
00899 https://nyu.databrary.org/volume/899 65
00950 https://nyu.databrary.org/volume/950 65
01436 https://nyu.databrary.org/volume/1436 65
00136 https://nyu.databrary.org/volume/136 62
00835 https://nyu.databrary.org/volume/835 62
01103 https://nyu.databrary.org/volume/1103 62
00837 https://nyu.databrary.org/volume/837 59
00350 https://nyu.databrary.org/volume/350 58
00150 https://nyu.databrary.org/volume/150 57
00007 https://nyu.databrary.org/volume/7 55
00163 https://nyu.databrary.org/volume/163 55
00144 https://nyu.databrary.org/volume/144 52
00192 https://nyu.databrary.org/volume/192 51
01141 https://nyu.databrary.org/volume/1141 48
01312 https://nyu.databrary.org/volume/1312 48
00827 https://nyu.databrary.org/volume/827 47
01129 https://nyu.databrary.org/volume/1129 47
01415 https://nyu.databrary.org/volume/1415 47
00954 https://nyu.databrary.org/volume/954 46
01026 https://nyu.databrary.org/volume/1026 46
01551 https://nyu.databrary.org/volume/1551 46
01108 https://nyu.databrary.org/volume/1108 44
01328 https://nyu.databrary.org/volume/1328 43
00400 https://nyu.databrary.org/volume/400 41
00455 https://nyu.databrary.org/volume/455 41
00941 https://nyu.databrary.org/volume/941 41
01448 https://nyu.databrary.org/volume/1448 41
00854 https://nyu.databrary.org/volume/854 39
01517 https://nyu.databrary.org/volume/1517 39
00146 https://nyu.databrary.org/volume/146 38
00123 https://nyu.databrary.org/volume/123 37
00476 https://nyu.databrary.org/volume/476 35
00218 https://nyu.databrary.org/volume/218 34
00957 https://nyu.databrary.org/volume/957 34
00979 https://nyu.databrary.org/volume/979 34
01515 https://nyu.databrary.org/volume/1515 34
00075 https://nyu.databrary.org/volume/75 33
00174 https://nyu.databrary.org/volume/174 33
00444 https://nyu.databrary.org/volume/444 33
01397 https://nyu.databrary.org/volume/1397 33
00135 https://nyu.databrary.org/volume/135 32
00073 https://nyu.databrary.org/volume/73 31
00098 https://nyu.databrary.org/volume/98 31
01066 https://nyu.databrary.org/volume/1066 31
00943 https://nyu.databrary.org/volume/943 30
01321 https://nyu.databrary.org/volume/1321 30
01370 https://nyu.databrary.org/volume/1370 30
01365 https://nyu.databrary.org/volume/1365 28
00821 https://nyu.databrary.org/volume/821 26
01128 https://nyu.databrary.org/volume/1128 26
01363 https://nyu.databrary.org/volume/1363 25
01143 https://nyu.databrary.org/volume/1143 23
00452 https://nyu.databrary.org/volume/452 22
00132 https://nyu.databrary.org/volume/132 19
00443 https://nyu.databrary.org/volume/443 19
00996 https://nyu.databrary.org/volume/996 19
01391 https://nyu.databrary.org/volume/1391 19
01422 https://nyu.databrary.org/volume/1422 19
00108 https://nyu.databrary.org/volume/108 17
01481 https://nyu.databrary.org/volume/1481 17
00169 https://nyu.databrary.org/volume/169 16
01008 https://nyu.databrary.org/volume/1008 16
01376 https://nyu.databrary.org/volume/1376 16
00171 https://nyu.databrary.org/volume/171 15
00710 https://nyu.databrary.org/volume/710 15
00956 https://nyu.databrary.org/volume/956 14
00124 https://nyu.databrary.org/volume/124 13
00217 https://nyu.databrary.org/volume/217 13
00390 https://nyu.databrary.org/volume/390 13
00966 https://nyu.databrary.org/volume/966 13
00145 https://nyu.databrary.org/volume/145 12
00149 https://nyu.databrary.org/volume/149 12
00761 https://nyu.databrary.org/volume/761 11
00015 https://nyu.databrary.org/volume/15 10
00323 https://nyu.databrary.org/volume/323 10
01590 https://nyu.databrary.org/volume/1590 10
00148 https://nyu.databrary.org/volume/148 9
01442 https://nyu.databrary.org/volume/1442 9
01459 https://nyu.databrary.org/volume/1459 7
01663 https://nyu.databrary.org/volume/1663 7
01400 https://nyu.databrary.org/volume/1400 6
01576 https://nyu.databrary.org/volume/1576 6
01656 https://nyu.databrary.org/volume/1656 6
00002 https://nyu.databrary.org/volume/2 4
00254 https://nyu.databrary.org/volume/254 4
00241 https://nyu.databrary.org/volume/241 3
00881 https://nyu.databrary.org/volume/881 3
00009 https://nyu.databrary.org/volume/9 2
00760 https://nyu.databrary.org/volume/760 2
00982 https://nyu.databrary.org/volume/982 2
01023 https://nyu.databrary.org/volume/1023 2
01362 https://nyu.databrary.org/volume/1362 2
01596 https://nyu.databrary.org/volume/1596 2
00101 https://nyu.databrary.org/volume/101 1
00116 https://nyu.databrary.org/volume/116 1
00142 https://nyu.databrary.org/volume/142 1
00876 https://nyu.databrary.org/volume/876 1
01073 https://nyu.databrary.org/volume/1073 1
01509 https://nyu.databrary.org/volume/1509 1
01624 https://nyu.databrary.org/volume/1624 1
01657 https://nyu.databrary.org/volume/1657 1
01688 https://nyu.databrary.org/volume/1688 1
01705 https://nyu.databrary.org/volume/1705 1

There are n= 147 shared volumes reporting age_days.

n participants and age distribution

The following summarizes the number of individual participant-sessions for whom there are data.

Code
age_df <- demo_df |>
  dplyr::mutate(age_grp = cut(as.numeric(demo_df$age_days), c(0, 90, 180, 365.25, 2*365.25, 3*365.25, 4*365.25, 5*365.25, 15*365.25, 20*365.25, 25*365.25, 100*365.25), c("<3m", "3-6m", "6m-1y", "1-2y", "2-3y", "3-4y", "4-5y", "5-15y", "15-20y", "20-25y", ">25y")))

xtabs(formula = ~ age_grp, data = age_df)
age_grp
   <3m   3-6m  6m-1y   1-2y   2-3y   3-4y   4-5y  5-15y 15-20y 20-25y   >25y 
   103    157   1176   3390    875    474    897   1527     74    308    411 
Code
demo_df |>
  dplyr::filter(age_days <= 365.24*5) |>
  ggplot2::ggplot() +
  ggplot2::aes(age_days) +
  ggplot2::geom_histogram() +
  ggplot2::ggtitle("Age at test (days) for 5-year-olds and younger")
Don't know how to automatically pick scale for object of type <difftime>.
Defaulting to continuous.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Age distribution of < 5yrs
Code
demo_df |>
  dplyr::filter(age_days > 365.24*5,
                age_days <= 365.24*15) |>
  ggplot2::ggplot() +
  ggplot2::aes(age_days) +
  ggplot2::geom_histogram() +
  ggplot2::ggtitle("Age at test (days) for 5-15 year-olds")
Don't know how to automatically pick scale for object of type <difftime>.
Defaulting to continuous.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Age distribution of 5-15 year-olds
Code
demo_df |>
  dplyr::filter(age_days > 365.24*15) |>
  ggplot2::ggplot() +
  ggplot2::aes(age_days) +
  ggplot2::geom_histogram() +
  ggplot2::ggtitle("Age at test (days) 15+ year-olds")
Don't know how to automatically pick scale for object of type <difftime>.
Defaulting to continuous.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Age distribution of 15+ year-olds

Gender

Volumes and sessions

Code
gender_df <- demo_df |>
  dplyr::filter(!is.na(participant_gender)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
gender_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00008 https://nyu.databrary.org/volume/8 1318
00564 https://nyu.databrary.org/volume/564 459
00090 https://nyu.databrary.org/volume/90 312
00739 https://nyu.databrary.org/volume/739 295
00011 https://nyu.databrary.org/volume/11 236
00087 https://nyu.databrary.org/volume/87 231
01020 https://nyu.databrary.org/volume/1020 220
00359 https://nyu.databrary.org/volume/359 216
00400 https://nyu.databrary.org/volume/400 182
00322 https://nyu.databrary.org/volume/322 173
00184 https://nyu.databrary.org/volume/184 161
01042 https://nyu.databrary.org/volume/1042 161
00030 https://nyu.databrary.org/volume/30 157
01364 https://nyu.databrary.org/volume/1364 156
00149 https://nyu.databrary.org/volume/149 155
00139 https://nyu.databrary.org/volume/139 142
01075 https://nyu.databrary.org/volume/1075 138
00005 https://nyu.databrary.org/volume/5 133
00088 https://nyu.databrary.org/volume/88 132
00226 https://nyu.databrary.org/volume/226 129
00989 https://nyu.databrary.org/volume/989 127
00563 https://nyu.databrary.org/volume/563 118
00207 https://nyu.databrary.org/volume/207 116
00253 https://nyu.databrary.org/volume/253 115
00271 https://nyu.databrary.org/volume/271 115
00089 https://nyu.databrary.org/volume/89 114
00150 https://nyu.databrary.org/volume/150 111
01526 https://nyu.databrary.org/volume/1526 111
00083 https://nyu.databrary.org/volume/83 109
00308 https://nyu.databrary.org/volume/308 109
00988 https://nyu.databrary.org/volume/988 109
00114 https://nyu.databrary.org/volume/114 105
00084 https://nyu.databrary.org/volume/84 104
00269 https://nyu.databrary.org/volume/269 102
00140 https://nyu.databrary.org/volume/140 97
00950 https://nyu.databrary.org/volume/950 95
00162 https://nyu.databrary.org/volume/162 93
00460 https://nyu.databrary.org/volume/460 91
00484 https://nyu.databrary.org/volume/484 90
01141 https://nyu.databrary.org/volume/1141 90
01129 https://nyu.databrary.org/volume/1129 89
00070 https://nyu.databrary.org/volume/70 88
00152 https://nyu.databrary.org/volume/152 84
01273 https://nyu.databrary.org/volume/1273 82
00434 https://nyu.databrary.org/volume/434 79
00868 https://nyu.databrary.org/volume/868 77
01379 https://nyu.databrary.org/volume/1379 76
01567 https://nyu.databrary.org/volume/1567 74
00321 https://nyu.databrary.org/volume/321 71
00004 https://nyu.databrary.org/volume/4 67
00899 https://nyu.databrary.org/volume/899 65
01436 https://nyu.databrary.org/volume/1436 65
00081 https://nyu.databrary.org/volume/81 63
00136 https://nyu.databrary.org/volume/136 62
00835 https://nyu.databrary.org/volume/835 62
01103 https://nyu.databrary.org/volume/1103 62
00350 https://nyu.databrary.org/volume/350 58
00837 https://nyu.databrary.org/volume/837 58
00854 https://nyu.databrary.org/volume/854 57
00007 https://nyu.databrary.org/volume/7 55
00163 https://nyu.databrary.org/volume/163 55
00144 https://nyu.databrary.org/volume/144 52
00192 https://nyu.databrary.org/volume/192 51
01312 https://nyu.databrary.org/volume/1312 48
00827 https://nyu.databrary.org/volume/827 47
01415 https://nyu.databrary.org/volume/1415 47
00954 https://nyu.databrary.org/volume/954 46
01026 https://nyu.databrary.org/volume/1026 46
01551 https://nyu.databrary.org/volume/1551 46
01108 https://nyu.databrary.org/volume/1108 44
01328 https://nyu.databrary.org/volume/1328 43
00941 https://nyu.databrary.org/volume/941 42
00455 https://nyu.databrary.org/volume/455 41
01128 https://nyu.databrary.org/volume/1128 41
01448 https://nyu.databrary.org/volume/1448 41
00108 https://nyu.databrary.org/volume/108 40
01517 https://nyu.databrary.org/volume/1517 39
00146 https://nyu.databrary.org/volume/146 38
00123 https://nyu.databrary.org/volume/123 37
00476 https://nyu.databrary.org/volume/476 35
00218 https://nyu.databrary.org/volume/218 34
00592 https://nyu.databrary.org/volume/592 34
00957 https://nyu.databrary.org/volume/957 34
00979 https://nyu.databrary.org/volume/979 34
01515 https://nyu.databrary.org/volume/1515 34
00075 https://nyu.databrary.org/volume/75 33
00098 https://nyu.databrary.org/volume/98 33
00135 https://nyu.databrary.org/volume/135 33
00174 https://nyu.databrary.org/volume/174 33
00444 https://nyu.databrary.org/volume/444 33
01397 https://nyu.databrary.org/volume/1397 33
01321 https://nyu.databrary.org/volume/1321 32
00073 https://nyu.databrary.org/volume/73 31
00101 https://nyu.databrary.org/volume/101 31
01066 https://nyu.databrary.org/volume/1066 31
00943 https://nyu.databrary.org/volume/943 30
01370 https://nyu.databrary.org/volume/1370 30
01365 https://nyu.databrary.org/volume/1365 28
00452 https://nyu.databrary.org/volume/452 26
00821 https://nyu.databrary.org/volume/821 26
01363 https://nyu.databrary.org/volume/1363 25
01143 https://nyu.databrary.org/volume/1143 24
00443 https://nyu.databrary.org/volume/443 20
00132 https://nyu.databrary.org/volume/132 19
00996 https://nyu.databrary.org/volume/996 19
01391 https://nyu.databrary.org/volume/1391 19
01422 https://nyu.databrary.org/volume/1422 19
00390 https://nyu.databrary.org/volume/390 18
00171 https://nyu.databrary.org/volume/171 17
01481 https://nyu.databrary.org/volume/1481 17
00169 https://nyu.databrary.org/volume/169 16
00710 https://nyu.databrary.org/volume/710 16
01008 https://nyu.databrary.org/volume/1008 16
01376 https://nyu.databrary.org/volume/1376 16
00956 https://nyu.databrary.org/volume/956 14
00124 https://nyu.databrary.org/volume/124 13
00217 https://nyu.databrary.org/volume/217 13
00966 https://nyu.databrary.org/volume/966 13
00015 https://nyu.databrary.org/volume/15 12
00145 https://nyu.databrary.org/volume/145 12
01442 https://nyu.databrary.org/volume/1442 12
00143 https://nyu.databrary.org/volume/143 11
00761 https://nyu.databrary.org/volume/761 11
00323 https://nyu.databrary.org/volume/323 10
01590 https://nyu.databrary.org/volume/1590 10
00148 https://nyu.databrary.org/volume/148 9
01459 https://nyu.databrary.org/volume/1459 7
01663 https://nyu.databrary.org/volume/1663 7
00351 https://nyu.databrary.org/volume/351 6
01400 https://nyu.databrary.org/volume/1400 6
01576 https://nyu.databrary.org/volume/1576 6
01656 https://nyu.databrary.org/volume/1656 6
01419 https://nyu.databrary.org/volume/1419 5
00002 https://nyu.databrary.org/volume/2 4
00254 https://nyu.databrary.org/volume/254 4
01206 https://nyu.databrary.org/volume/1206 4
00241 https://nyu.databrary.org/volume/241 3
00881 https://nyu.databrary.org/volume/881 3
00009 https://nyu.databrary.org/volume/9 2
00760 https://nyu.databrary.org/volume/760 2
00982 https://nyu.databrary.org/volume/982 2
01023 https://nyu.databrary.org/volume/1023 2
01362 https://nyu.databrary.org/volume/1362 2
01596 https://nyu.databrary.org/volume/1596 2
00116 https://nyu.databrary.org/volume/116 1
00142 https://nyu.databrary.org/volume/142 1
00876 https://nyu.databrary.org/volume/876 1
01073 https://nyu.databrary.org/volume/1073 1
01509 https://nyu.databrary.org/volume/1509 1
01624 https://nyu.databrary.org/volume/1624 1
01657 https://nyu.databrary.org/volume/1657 1
01688 https://nyu.databrary.org/volume/1688 1
01705 https://nyu.databrary.org/volume/1705 1

There are n= 153 shared volumes reporting participant_gender.

n participants

Code
xtabs(formula = ~ participant_gender, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_gender Freq
Female 5355
Male 5255
Non binary 2
Non-binary 1
Other 1
Unknown 1
Unknown or not reported 1

Race

Volumes and sessions

Code
race_df <- demo_df |>
  dplyr::filter(!is.na(participant_race)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
race_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00008 https://nyu.databrary.org/volume/8 1318
00564 https://nyu.databrary.org/volume/564 459
00011 https://nyu.databrary.org/volume/11 236
00087 https://nyu.databrary.org/volume/87 231
01020 https://nyu.databrary.org/volume/1020 220
00359 https://nyu.databrary.org/volume/359 216
00400 https://nyu.databrary.org/volume/400 177
00322 https://nyu.databrary.org/volume/322 173
00184 https://nyu.databrary.org/volume/184 157
00149 https://nyu.databrary.org/volume/149 155
01364 https://nyu.databrary.org/volume/1364 151
00139 https://nyu.databrary.org/volume/139 141
00030 https://nyu.databrary.org/volume/30 134
00005 https://nyu.databrary.org/volume/5 133
00088 https://nyu.databrary.org/volume/88 132
00226 https://nyu.databrary.org/volume/226 129
00989 https://nyu.databrary.org/volume/989 127
01042 https://nyu.databrary.org/volume/1042 122
00563 https://nyu.databrary.org/volume/563 118
00089 https://nyu.databrary.org/volume/89 114
00207 https://nyu.databrary.org/volume/207 114
00271 https://nyu.databrary.org/volume/271 113
00253 https://nyu.databrary.org/volume/253 112
00150 https://nyu.databrary.org/volume/150 110
01526 https://nyu.databrary.org/volume/1526 110
00083 https://nyu.databrary.org/volume/83 109
00988 https://nyu.databrary.org/volume/988 109
00308 https://nyu.databrary.org/volume/308 107
00070 https://nyu.databrary.org/volume/70 105
00114 https://nyu.databrary.org/volume/114 105
00269 https://nyu.databrary.org/volume/269 105
00084 https://nyu.databrary.org/volume/84 104
00140 https://nyu.databrary.org/volume/140 97
00950 https://nyu.databrary.org/volume/950 94
00162 https://nyu.databrary.org/volume/162 93
00460 https://nyu.databrary.org/volume/460 91
00152 https://nyu.databrary.org/volume/152 84
01273 https://nyu.databrary.org/volume/1273 82
00434 https://nyu.databrary.org/volume/434 79
00868 https://nyu.databrary.org/volume/868 77
01379 https://nyu.databrary.org/volume/1379 76
01567 https://nyu.databrary.org/volume/1567 74
00321 https://nyu.databrary.org/volume/321 70
00004 https://nyu.databrary.org/volume/4 67
00899 https://nyu.databrary.org/volume/899 65
01436 https://nyu.databrary.org/volume/1436 65
00136 https://nyu.databrary.org/volume/136 62
00835 https://nyu.databrary.org/volume/835 62
01103 https://nyu.databrary.org/volume/1103 62
00350 https://nyu.databrary.org/volume/350 58
00837 https://nyu.databrary.org/volume/837 56
00854 https://nyu.databrary.org/volume/854 56
00163 https://nyu.databrary.org/volume/163 55
00007 https://nyu.databrary.org/volume/7 54
00192 https://nyu.databrary.org/volume/192 51
01312 https://nyu.databrary.org/volume/1312 48
00827 https://nyu.databrary.org/volume/827 47
00954 https://nyu.databrary.org/volume/954 46
01026 https://nyu.databrary.org/volume/1026 44
01108 https://nyu.databrary.org/volume/1108 43
00941 https://nyu.databrary.org/volume/941 42
00455 https://nyu.databrary.org/volume/455 41
01128 https://nyu.databrary.org/volume/1128 41
01448 https://nyu.databrary.org/volume/1448 41
00108 https://nyu.databrary.org/volume/108 40
01517 https://nyu.databrary.org/volume/1517 39
00146 https://nyu.databrary.org/volume/146 38
00123 https://nyu.databrary.org/volume/123 37
00476 https://nyu.databrary.org/volume/476 35
00218 https://nyu.databrary.org/volume/218 34
00957 https://nyu.databrary.org/volume/957 34
00979 https://nyu.databrary.org/volume/979 34
01515 https://nyu.databrary.org/volume/1515 34
00135 https://nyu.databrary.org/volume/135 33
00174 https://nyu.databrary.org/volume/174 33
00444 https://nyu.databrary.org/volume/444 33
00592 https://nyu.databrary.org/volume/592 33
01397 https://nyu.databrary.org/volume/1397 33
00073 https://nyu.databrary.org/volume/73 31
01066 https://nyu.databrary.org/volume/1066 31
00943 https://nyu.databrary.org/volume/943 30
01370 https://nyu.databrary.org/volume/1370 30
00452 https://nyu.databrary.org/volume/452 26
00821 https://nyu.databrary.org/volume/821 26
01363 https://nyu.databrary.org/volume/1363 25
01143 https://nyu.databrary.org/volume/1143 24
00443 https://nyu.databrary.org/volume/443 20
01365 https://nyu.databrary.org/volume/1365 20
00132 https://nyu.databrary.org/volume/132 19
01391 https://nyu.databrary.org/volume/1391 19
01422 https://nyu.databrary.org/volume/1422 19
00390 https://nyu.databrary.org/volume/390 18
00996 https://nyu.databrary.org/volume/996 18
00171 https://nyu.databrary.org/volume/171 17
01481 https://nyu.databrary.org/volume/1481 17
00169 https://nyu.databrary.org/volume/169 16
01008 https://nyu.databrary.org/volume/1008 16
01376 https://nyu.databrary.org/volume/1376 16
00956 https://nyu.databrary.org/volume/956 14
00124 https://nyu.databrary.org/volume/124 13
00217 https://nyu.databrary.org/volume/217 13
00966 https://nyu.databrary.org/volume/966 13
00015 https://nyu.databrary.org/volume/15 12
00145 https://nyu.databrary.org/volume/145 12
01442 https://nyu.databrary.org/volume/1442 12
00143 https://nyu.databrary.org/volume/143 11
00761 https://nyu.databrary.org/volume/761 11
00323 https://nyu.databrary.org/volume/323 10
01590 https://nyu.databrary.org/volume/1590 10
00148 https://nyu.databrary.org/volume/148 9
01459 https://nyu.databrary.org/volume/1459 7
01663 https://nyu.databrary.org/volume/1663 7
01400 https://nyu.databrary.org/volume/1400 6
01576 https://nyu.databrary.org/volume/1576 6
01656 https://nyu.databrary.org/volume/1656 6
00351 https://nyu.databrary.org/volume/351 5
01419 https://nyu.databrary.org/volume/1419 5
00002 https://nyu.databrary.org/volume/2 4
00254 https://nyu.databrary.org/volume/254 4
00241 https://nyu.databrary.org/volume/241 3
00881 https://nyu.databrary.org/volume/881 3
00009 https://nyu.databrary.org/volume/9 2
00760 https://nyu.databrary.org/volume/760 2
00982 https://nyu.databrary.org/volume/982 2
01023 https://nyu.databrary.org/volume/1023 2
01362 https://nyu.databrary.org/volume/1362 2
01596 https://nyu.databrary.org/volume/1596 2
00116 https://nyu.databrary.org/volume/116 1
00142 https://nyu.databrary.org/volume/142 1
00144 https://nyu.databrary.org/volume/144 1
00876 https://nyu.databrary.org/volume/876 1
01073 https://nyu.databrary.org/volume/1073 1
01624 https://nyu.databrary.org/volume/1624 1
01657 https://nyu.databrary.org/volume/1657 1
01688 https://nyu.databrary.org/volume/1688 1
01705 https://nyu.databrary.org/volume/1705 1

There are n= 136 shared volumes reporting participant_race.

n participants

Code
xtabs(formula = ~ participant_race, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_race Freq
1/2 White, 1/2 Asian 1
African American and Puerto Rican 1
African American and White 1
American Indian or Alaska Native 8
Arab 1
Ashkenazi Jewish 1
Asian 1185
Asian and Hispanic or Latino 1
Asian and White 2
Biracial 1
Black and Asian 1
Black or African American 1225
Black or African American AND Native Hawaiian or Pacific Islander 1
Black or African American White 1
Black or African American, White 1
Black or African-American 1
Black/Mixed 1
Chose not to answer 5
Chose Not To Asnwer 1
Decline to State 1
Did Not Answer 3
Did not report 1
Dominican American 1
European White 38
H 7
Half Asian 1
Hawaiian or other Pacific Islander 1
Hawaiian or Pacific Islander 1
Hispanic/Mixed Race 1
I choose not to answer 4
I choose not to answer this question 3
Indian 3
Latino, Native American, white 1
Middle East 1
Mixed 3
More than one 943
More than one race 1
More than one race: Asian and White 2
More than one race: North african and asian 1
More than one race: White and Asian 1
More than one race: White and middle eastern 1
More than one race: White, Asian 1
More than one race: White, Jewish, Latinx 1
More than one race: White/ Asian 1
More than one: Black or African and White 1
Native American or Alaskan Native 1
Native Hawaiian or Other Pacific Islander 2
Nepall 1
Not reported 2
Not Reported 2
Other 58
Pacific Islander 1
Refused 3
South Asian 14
South East Asian/ East Asian 1
Unknown or not reported 395
While 1
White 5143
White & Mexican American 1
White and Afro Latina 12
White and Asian 7
White and Black 1
White, American Indian or Alaskan Native, and Hispanic or Latino 1
White, Asian 1
White, Asian, Hawaiian 1
White, Black/African American 1
White/Asian 1
White/Mixed 1
White/Vietnamese 1

Ethnicity

Volumes and sessions

Code
ethnicity_df <- demo_df |>
  dplyr::filter(!is.na(participant_ethnicity)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
ethnicity_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00008 https://nyu.databrary.org/volume/8 1318
00564 https://nyu.databrary.org/volume/564 459
00011 https://nyu.databrary.org/volume/11 236
00087 https://nyu.databrary.org/volume/87 231
01020 https://nyu.databrary.org/volume/1020 220
00359 https://nyu.databrary.org/volume/359 216
00322 https://nyu.databrary.org/volume/322 173
00184 https://nyu.databrary.org/volume/184 158
01042 https://nyu.databrary.org/volume/1042 155
00400 https://nyu.databrary.org/volume/400 151
01364 https://nyu.databrary.org/volume/1364 151
00139 https://nyu.databrary.org/volume/139 142
00005 https://nyu.databrary.org/volume/5 133
00088 https://nyu.databrary.org/volume/88 132
00226 https://nyu.databrary.org/volume/226 129
00989 https://nyu.databrary.org/volume/989 121
00563 https://nyu.databrary.org/volume/563 118
00089 https://nyu.databrary.org/volume/89 114
00253 https://nyu.databrary.org/volume/253 114
00207 https://nyu.databrary.org/volume/207 113
00271 https://nyu.databrary.org/volume/271 111
01526 https://nyu.databrary.org/volume/1526 110
00083 https://nyu.databrary.org/volume/83 109
00308 https://nyu.databrary.org/volume/308 108
00114 https://nyu.databrary.org/volume/114 105
00269 https://nyu.databrary.org/volume/269 105
00988 https://nyu.databrary.org/volume/988 105
00084 https://nyu.databrary.org/volume/84 104
00140 https://nyu.databrary.org/volume/140 97
00162 https://nyu.databrary.org/volume/162 93
00460 https://nyu.databrary.org/volume/460 91
00484 https://nyu.databrary.org/volume/484 90
00152 https://nyu.databrary.org/volume/152 84
01273 https://nyu.databrary.org/volume/1273 82
00150 https://nyu.databrary.org/volume/150 81
00950 https://nyu.databrary.org/volume/950 80
00434 https://nyu.databrary.org/volume/434 79
00868 https://nyu.databrary.org/volume/868 77
01379 https://nyu.databrary.org/volume/1379 76
01567 https://nyu.databrary.org/volume/1567 74
00321 https://nyu.databrary.org/volume/321 70
00004 https://nyu.databrary.org/volume/4 67
00899 https://nyu.databrary.org/volume/899 65
01436 https://nyu.databrary.org/volume/1436 65
00136 https://nyu.databrary.org/volume/136 62
00835 https://nyu.databrary.org/volume/835 62
01103 https://nyu.databrary.org/volume/1103 62
00070 https://nyu.databrary.org/volume/70 58
00350 https://nyu.databrary.org/volume/350 58
00007 https://nyu.databrary.org/volume/7 55
00163 https://nyu.databrary.org/volume/163 55
00854 https://nyu.databrary.org/volume/854 54
00192 https://nyu.databrary.org/volume/192 51
01312 https://nyu.databrary.org/volume/1312 48
00827 https://nyu.databrary.org/volume/827 47
00954 https://nyu.databrary.org/volume/954 46
01026 https://nyu.databrary.org/volume/1026 45
00941 https://nyu.databrary.org/volume/941 42
00455 https://nyu.databrary.org/volume/455 41
01108 https://nyu.databrary.org/volume/1108 41
01128 https://nyu.databrary.org/volume/1128 41
01448 https://nyu.databrary.org/volume/1448 41
00108 https://nyu.databrary.org/volume/108 40
01517 https://nyu.databrary.org/volume/1517 39
00146 https://nyu.databrary.org/volume/146 38
00123 https://nyu.databrary.org/volume/123 37
00476 https://nyu.databrary.org/volume/476 35
00218 https://nyu.databrary.org/volume/218 34
00957 https://nyu.databrary.org/volume/957 34
00979 https://nyu.databrary.org/volume/979 34
01515 https://nyu.databrary.org/volume/1515 34
00135 https://nyu.databrary.org/volume/135 33
00444 https://nyu.databrary.org/volume/444 33
01397 https://nyu.databrary.org/volume/1397 33
00149 https://nyu.databrary.org/volume/149 32
00073 https://nyu.databrary.org/volume/73 31
00174 https://nyu.databrary.org/volume/174 31
01066 https://nyu.databrary.org/volume/1066 31
00943 https://nyu.databrary.org/volume/943 30
01370 https://nyu.databrary.org/volume/1370 30
00452 https://nyu.databrary.org/volume/452 26
00821 https://nyu.databrary.org/volume/821 26
01363 https://nyu.databrary.org/volume/1363 25
01143 https://nyu.databrary.org/volume/1143 24
00030 https://nyu.databrary.org/volume/30 23
00443 https://nyu.databrary.org/volume/443 20
01365 https://nyu.databrary.org/volume/1365 20
00132 https://nyu.databrary.org/volume/132 19
01391 https://nyu.databrary.org/volume/1391 19
01422 https://nyu.databrary.org/volume/1422 19
00390 https://nyu.databrary.org/volume/390 18
00996 https://nyu.databrary.org/volume/996 18
00171 https://nyu.databrary.org/volume/171 17
01481 https://nyu.databrary.org/volume/1481 17
00169 https://nyu.databrary.org/volume/169 16
01008 https://nyu.databrary.org/volume/1008 16
01376 https://nyu.databrary.org/volume/1376 16
00956 https://nyu.databrary.org/volume/956 14
00124 https://nyu.databrary.org/volume/124 13
00217 https://nyu.databrary.org/volume/217 13
00966 https://nyu.databrary.org/volume/966 13
00015 https://nyu.databrary.org/volume/15 12
00145 https://nyu.databrary.org/volume/145 12
01442 https://nyu.databrary.org/volume/1442 12
00143 https://nyu.databrary.org/volume/143 11
00761 https://nyu.databrary.org/volume/761 11
00323 https://nyu.databrary.org/volume/323 10
01590 https://nyu.databrary.org/volume/1590 10
00148 https://nyu.databrary.org/volume/148 9
01459 https://nyu.databrary.org/volume/1459 7
01663 https://nyu.databrary.org/volume/1663 7
01400 https://nyu.databrary.org/volume/1400 6
01576 https://nyu.databrary.org/volume/1576 6
01656 https://nyu.databrary.org/volume/1656 6
00351 https://nyu.databrary.org/volume/351 5
01419 https://nyu.databrary.org/volume/1419 5
00002 https://nyu.databrary.org/volume/2 4
00254 https://nyu.databrary.org/volume/254 4
00241 https://nyu.databrary.org/volume/241 3
00881 https://nyu.databrary.org/volume/881 3
00009 https://nyu.databrary.org/volume/9 2
00760 https://nyu.databrary.org/volume/760 2
00982 https://nyu.databrary.org/volume/982 2
01023 https://nyu.databrary.org/volume/1023 2
01362 https://nyu.databrary.org/volume/1362 2
01596 https://nyu.databrary.org/volume/1596 2
00116 https://nyu.databrary.org/volume/116 1
00142 https://nyu.databrary.org/volume/142 1
00144 https://nyu.databrary.org/volume/144 1
00876 https://nyu.databrary.org/volume/876 1
01073 https://nyu.databrary.org/volume/1073 1
01624 https://nyu.databrary.org/volume/1624 1
01657 https://nyu.databrary.org/volume/1657 1
01688 https://nyu.databrary.org/volume/1688 1
01705 https://nyu.databrary.org/volume/1705 1

There are n= 135 shared volumes reporting participant_ethnicity.

n participants

Code
xtabs(formula = ~ participant_ethnicity, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_ethnicity Freq
Asian 1
Chinese 221
Choose not to answer 2
Chose not to answer 3
Chose Not To Answer 1
Decline to State 2
did not answer 1
Did Not Answer 3
Dominican 393
Hispanic or Latino 1180
Hispanic or Latinx 3
I choose not to answer this question 7
Indigenous 1
Mexican 357
More than one 1
Non-Hispanic 5
Not Hispanic or Latino 5613
Not Hispanic or Latinoo 1
Not Hispanic or Latinx 2
Not Hispanic/Latinx 1
Not indigenous 2
Not reported 3
Not Reported 4
Refused 3
Unknown or not reported 976

Participant language

Volumes and sessions

Code
language_df <- demo_df |>
  dplyr::filter(!is.na(participant_language)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
language_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00008 https://nyu.databrary.org/volume/8 1318
00011 https://nyu.databrary.org/volume/11 468
00564 https://nyu.databrary.org/volume/564 459
00090 https://nyu.databrary.org/volume/90 312
00088 https://nyu.databrary.org/volume/88 262
00087 https://nyu.databrary.org/volume/87 231
01020 https://nyu.databrary.org/volume/1020 220
00359 https://nyu.databrary.org/volume/359 216
00400 https://nyu.databrary.org/volume/400 182
00460 https://nyu.databrary.org/volume/460 175
00322 https://nyu.databrary.org/volume/322 173
00184 https://nyu.databrary.org/volume/184 161
01042 https://nyu.databrary.org/volume/1042 161
01364 https://nyu.databrary.org/volume/1364 161
00149 https://nyu.databrary.org/volume/149 155
00226 https://nyu.databrary.org/volume/226 129
00989 https://nyu.databrary.org/volume/989 127
00207 https://nyu.databrary.org/volume/207 118
00563 https://nyu.databrary.org/volume/563 118
00253 https://nyu.databrary.org/volume/253 115
00089 https://nyu.databrary.org/volume/89 114
00150 https://nyu.databrary.org/volume/150 111
01526 https://nyu.databrary.org/volume/1526 111
00083 https://nyu.databrary.org/volume/83 109
00308 https://nyu.databrary.org/volume/308 109
00988 https://nyu.databrary.org/volume/988 109
00114 https://nyu.databrary.org/volume/114 105
00269 https://nyu.databrary.org/volume/269 105
00084 https://nyu.databrary.org/volume/84 104
00140 https://nyu.databrary.org/volume/140 97
00950 https://nyu.databrary.org/volume/950 96
00162 https://nyu.databrary.org/volume/162 93
00152 https://nyu.databrary.org/volume/152 84
01273 https://nyu.databrary.org/volume/1273 82
00434 https://nyu.databrary.org/volume/434 79
00868 https://nyu.databrary.org/volume/868 77
01379 https://nyu.databrary.org/volume/1379 76
01567 https://nyu.databrary.org/volume/1567 74
00321 https://nyu.databrary.org/volume/321 71
01436 https://nyu.databrary.org/volume/1436 67
00899 https://nyu.databrary.org/volume/899 65
00136 https://nyu.databrary.org/volume/136 62
00835 https://nyu.databrary.org/volume/835 62
01103 https://nyu.databrary.org/volume/1103 62
00837 https://nyu.databrary.org/volume/837 59
00854 https://nyu.databrary.org/volume/854 59
00350 https://nyu.databrary.org/volume/350 58
01312 https://nyu.databrary.org/volume/1312 48
00827 https://nyu.databrary.org/volume/827 47
00954 https://nyu.databrary.org/volume/954 46
01026 https://nyu.databrary.org/volume/1026 46
01108 https://nyu.databrary.org/volume/1108 44
00941 https://nyu.databrary.org/volume/941 42
01448 https://nyu.databrary.org/volume/1448 41
01517 https://nyu.databrary.org/volume/1517 39
00123 https://nyu.databrary.org/volume/123 37
00476 https://nyu.databrary.org/volume/476 35
00218 https://nyu.databrary.org/volume/218 34
00592 https://nyu.databrary.org/volume/592 34
00957 https://nyu.databrary.org/volume/957 34
00979 https://nyu.databrary.org/volume/979 34
01515 https://nyu.databrary.org/volume/1515 34
00075 https://nyu.databrary.org/volume/75 33
00444 https://nyu.databrary.org/volume/444 33
01397 https://nyu.databrary.org/volume/1397 33
00073 https://nyu.databrary.org/volume/73 31
01066 https://nyu.databrary.org/volume/1066 31
00943 https://nyu.databrary.org/volume/943 30
01370 https://nyu.databrary.org/volume/1370 30
01365 https://nyu.databrary.org/volume/1365 28
00452 https://nyu.databrary.org/volume/452 26
00821 https://nyu.databrary.org/volume/821 26
01363 https://nyu.databrary.org/volume/1363 26
01143 https://nyu.databrary.org/volume/1143 24
00132 https://nyu.databrary.org/volume/132 19
00996 https://nyu.databrary.org/volume/996 19
01391 https://nyu.databrary.org/volume/1391 19
01422 https://nyu.databrary.org/volume/1422 19
00390 https://nyu.databrary.org/volume/390 18
00171 https://nyu.databrary.org/volume/171 17
01376 https://nyu.databrary.org/volume/1376 17
01481 https://nyu.databrary.org/volume/1481 17
00169 https://nyu.databrary.org/volume/169 16
00710 https://nyu.databrary.org/volume/710 16
01008 https://nyu.databrary.org/volume/1008 16
00956 https://nyu.databrary.org/volume/956 14
00124 https://nyu.databrary.org/volume/124 13
00217 https://nyu.databrary.org/volume/217 13
00966 https://nyu.databrary.org/volume/966 13
00145 https://nyu.databrary.org/volume/145 12
01442 https://nyu.databrary.org/volume/1442 12
00143 https://nyu.databrary.org/volume/143 11
00761 https://nyu.databrary.org/volume/761 11
00323 https://nyu.databrary.org/volume/323 10
01590 https://nyu.databrary.org/volume/1590 10
00148 https://nyu.databrary.org/volume/148 9
01459 https://nyu.databrary.org/volume/1459 7
01663 https://nyu.databrary.org/volume/1663 7
01400 https://nyu.databrary.org/volume/1400 6
01576 https://nyu.databrary.org/volume/1576 6
01656 https://nyu.databrary.org/volume/1656 6
01419 https://nyu.databrary.org/volume/1419 5
00254 https://nyu.databrary.org/volume/254 4
00194 https://nyu.databrary.org/volume/194 3
00241 https://nyu.databrary.org/volume/241 3
00881 https://nyu.databrary.org/volume/881 3
00982 https://nyu.databrary.org/volume/982 3
00009 https://nyu.databrary.org/volume/9 2
00116 https://nyu.databrary.org/volume/116 2
00760 https://nyu.databrary.org/volume/760 2
01023 https://nyu.databrary.org/volume/1023 2
01362 https://nyu.databrary.org/volume/1362 2
01596 https://nyu.databrary.org/volume/1596 2
00142 https://nyu.databrary.org/volume/142 1
00876 https://nyu.databrary.org/volume/876 1
01073 https://nyu.databrary.org/volume/1073 1
01624 https://nyu.databrary.org/volume/1624 1
01657 https://nyu.databrary.org/volume/1657 1
01688 https://nyu.databrary.org/volume/1688 1
01705 https://nyu.databrary.org/volume/1705 1

There are n= 120 shared volumes reporting participant_language.

n participants

Code
xtabs(formula = ~ participant_language, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_language Freq
Arabic 1
Arabic, English 2
Bengali, English 1
Bulgarian, English, Spanish 2
Cantonese 118
Cantonese - in Mandarin 56
Catalan 1
Chinese 1
Engish 1
Englidh 1
english 2
English 6759
English - ESL 9
English & Arabic 1
English & French 1
English & Greek 2
English & Japanese 1
English & Spanish 4
English & Spanish & German 1
English & Swedish 1
English & Tagalog 1
English 100% 14
English 50%, Russian 50% 1
English 90%, German 10% 1
English 90%, Vietnamese 5%, Chinese 5% 1
English and Bengali 1
English and Malayalam 1
English and Mandarin 1
English and Spanish 6
English Chinese 4
English Danish 1
English German 1
English Mandarin 1
English Other 1
English, Japanese 1
English, Albanian 2
English, Arabic 6
English, ASL 1
English, Bosnian, Spanish 9
English, Bulgarian, French 1
English, Cantonese 14
English, Cantonese, Japanese 1
English, Cantonese, Mandarin 1
English, Catalan 2
English, Catalonian, Spanish, Tamil 3
English, Chinese 13
English, Chinese, Cantanese 1
English, Chinese, Portuguese 1
English, Danish 2
English, Dutch, Mandarin 2
English, Estonian 1
English, Farsi 1
English, Filipino 11
English, French 18
English, French, Bulgarian 1
English, French, Spanish 7
English, French, Thai 1
English, German 7
English, German, Spanish 6
English, Greek 7
English, Hebrew 1
English, Hebrew, Spanish 1
English, Hindi 4
English, Hindi, Punjab 2
English, Hindi, Spanish 1
English, Hindi, Urdu, Punjabi, Spanish 1
English, Hungarian 3
English, Ilonggo 2
English, Italian 17
English, Italian, French 3
English, Italian, Spanish 4
English, Japanese 5
English, Japanese, Spanish 3
English, Kannada 11
English, Korean 10
English, Korean, Spanish 1
English, Mandarin 13
English, Mandarin, Cantonese 3
English, Mandarin, Cantonese, French 2
English, Mandarin, Norwegian 1
English, Marwadi 4
English, Nepal 1
English, Norwegian, Mandarin 1
English, Other 2
English, Polish 8
English, Polish, French 1
English, Polish, Hebrew 2
English, Polish, Spanish 1
English, Portuguese 11
English, Russian 17
English, Russian, Spanish 1
English, Serbian, Italian 1
English, Sign 1
English, some Spanish 2
English, Spanish 262
English, Spanish, Arabic 1
English, Spanish, Farsi 2
English, Spanish, French 5
English, Spanish, Hebrew 1
English, Spanish, Hindi 12
English, Spanish, Italian 1
English, Spanish, Polish 1
English, Spanish, Portuguese 1
English, Swedish 6
English, Swedish, Spanish, Italian, French, Mandarin 1
English, Sweedish 1
English, Tagalog 7
English, Tegalog 1
English, Thai 6
English, Thai, French 1
English, Thai, Spanish 1
English, Turkish 4
English, Ukranian, Cantonese 13
English, Urdu 2
English, Vietnamese, Korean 1
English,Spanish 2
English; Spanish 2
Enlgish 1
French 2
French & English 1
French 70%, English 25%, Spanish 5% 1
French, English 2
French, English, Russian 1
French, Spanish, English 1
Fulanu, English 1
Greek, English 1
Hebrew, Russian, English 7
Japanese 2
Japanese, English 1
Kazakh, English 1
Korean 13
Korean, English, Spanish 24
Mandarin 51
Mandarin, Cantonese, English 1
Mandarin, English 6
None 1
other 1
Other 2
Polish 2
Polish, English, Spanish 1
Portuguese, English 2
Russian 2
Russian, English 1
Russian, English, Ukrainian 3
spanish 126
Spanish 596
Spanish, English 23
Spanish, English, Hebrew 2
Spanish, German 1
Tajik 348
Tseltal 3
Turkish, English 2
Ukranian, English, Cantonese, Chinese 1
Unknown 71

Pregnancy term

Volumes and sessions

Code
participant_pregnancy_term_df <- demo_df |>
  dplyr::filter(!is.na(participant_pregnancy_term)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
participant_pregnancy_term_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00564 https://nyu.databrary.org/volume/564 459
00087 https://nyu.databrary.org/volume/87 231
00322 https://nyu.databrary.org/volume/322 173
00005 https://nyu.databrary.org/volume/5 133
00114 https://nyu.databrary.org/volume/114 105
00140 https://nyu.databrary.org/volume/140 97
00162 https://nyu.databrary.org/volume/162 93
00868 https://nyu.databrary.org/volume/868 77
00004 https://nyu.databrary.org/volume/4 67
00136 https://nyu.databrary.org/volume/136 62
00163 https://nyu.databrary.org/volume/163 55
00827 https://nyu.databrary.org/volume/827 47
01026 https://nyu.databrary.org/volume/1026 46
00455 https://nyu.databrary.org/volume/455 41
00123 https://nyu.databrary.org/volume/123 37
00476 https://nyu.databrary.org/volume/476 35
00135 https://nyu.databrary.org/volume/135 33
00132 https://nyu.databrary.org/volume/132 19
00124 https://nyu.databrary.org/volume/124 13
00323 https://nyu.databrary.org/volume/323 10
00351 https://nyu.databrary.org/volume/351 6

There are 21 shared volumes reporting participant_pregnancy_term.

n participants

Code
xtabs(formula = ~ participant_pregnancy_term, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_pregnancy_term Freq
30 weeks 2
34 weeks 1
36 weeks 1
37 1
37 weeks 2
37.5 weeks 1
38 weeks 2
39 weeks 6
41 weeks 2
42 weeks 1
Full term 1807
Fullterm 1
Not full term 2
Preterm 7
Unknown 3

Birthweight

Volumes and sessions

Code
participant_birth_weight_df <- demo_df |>
  dplyr::filter(!is.na(participant_birth_weight)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
participant_birth_weight_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00827 https://nyu.databrary.org/volume/827 41
00455 https://nyu.databrary.org/volume/455 35
00444 https://nyu.databrary.org/volume/444 19

There are n= 3 shared volumes reporting participant_birth_weight.

n participants

Code
xtabs(formula = ~ participant_birth_weight, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_birth_weight Freq
10.3 1
2.7 1
3.38 1
4.11 1
5.11 1
5.3 1
5.4 2
5.7 1
5.8 2
5.9 1
6 2
6.1 1
6.10 1
6.15 1
6.25 1
6.3 2
6.375 1
6.4 1
6.44 1
6.5 1
6.7 3
6.75 1
6.8 1
6.9 2
7 6
7.0 3
7.1 4
7.11 1
7.12 1
7.2 3
7.25 3
7.31 1
7.375 1
7.4 3
7.56 1
7.6 4
7.7 3
7.75 1
7.76 1
7.8 2
7.875 1
7.9 1
8 3
8.0 1
8.125 1
8.13 1
8.14 1
8.15 1
8.2 1
8.25 1
8.3 2
8.375 2
8.4 1
8.44 1
8.5 1
8.56 1
8.6 1
8.75 1
9 3
9.44 1

Histogram

Code
demo_df |>
  ggplot2::ggplot() +
  ggplot2::aes(x = as.numeric(participant_birth_weight)) +
  ggplot2::geom_histogram(bins = 15)
Warning: Removed 11599 rows containing non-finite outside the scale range
(`stat_bin()`).

Disability

Volumes and sessions

Code
participant_disability_df <- demo_df |>
  dplyr::filter(!is.na(participant_disability)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
participant_disability_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00011 https://nyu.databrary.org/volume/11 468
00564 https://nyu.databrary.org/volume/564 459
00088 https://nyu.databrary.org/volume/88 262
00087 https://nyu.databrary.org/volume/87 231
01020 https://nyu.databrary.org/volume/1020 220
00359 https://nyu.databrary.org/volume/359 216
00400 https://nyu.databrary.org/volume/400 182
00460 https://nyu.databrary.org/volume/460 175
00322 https://nyu.databrary.org/volume/322 173
01042 https://nyu.databrary.org/volume/1042 161
00005 https://nyu.databrary.org/volume/5 133
00226 https://nyu.databrary.org/volume/226 129
00989 https://nyu.databrary.org/volume/989 127
00563 https://nyu.databrary.org/volume/563 118
00271 https://nyu.databrary.org/volume/271 115
00089 https://nyu.databrary.org/volume/89 114
01526 https://nyu.databrary.org/volume/1526 111
00083 https://nyu.databrary.org/volume/83 109
00308 https://nyu.databrary.org/volume/308 109
00988 https://nyu.databrary.org/volume/988 109
00114 https://nyu.databrary.org/volume/114 105
00084 https://nyu.databrary.org/volume/84 104
00140 https://nyu.databrary.org/volume/140 97
00950 https://nyu.databrary.org/volume/950 96
00162 https://nyu.databrary.org/volume/162 93
00152 https://nyu.databrary.org/volume/152 84
01273 https://nyu.databrary.org/volume/1273 82
00434 https://nyu.databrary.org/volume/434 79
00868 https://nyu.databrary.org/volume/868 77
01379 https://nyu.databrary.org/volume/1379 76
01567 https://nyu.databrary.org/volume/1567 74
00321 https://nyu.databrary.org/volume/321 71
00004 https://nyu.databrary.org/volume/4 67
01436 https://nyu.databrary.org/volume/1436 67
00136 https://nyu.databrary.org/volume/136 62
00835 https://nyu.databrary.org/volume/835 62
00837 https://nyu.databrary.org/volume/837 59
00854 https://nyu.databrary.org/volume/854 59
00350 https://nyu.databrary.org/volume/350 58
00007 https://nyu.databrary.org/volume/7 55
00163 https://nyu.databrary.org/volume/163 55
00192 https://nyu.databrary.org/volume/192 51
01312 https://nyu.databrary.org/volume/1312 48
00827 https://nyu.databrary.org/volume/827 47
00954 https://nyu.databrary.org/volume/954 46
01026 https://nyu.databrary.org/volume/1026 46
01108 https://nyu.databrary.org/volume/1108 44
00941 https://nyu.databrary.org/volume/941 42
01448 https://nyu.databrary.org/volume/1448 41
00123 https://nyu.databrary.org/volume/123 37
00476 https://nyu.databrary.org/volume/476 35
00592 https://nyu.databrary.org/volume/592 34
00957 https://nyu.databrary.org/volume/957 34
00979 https://nyu.databrary.org/volume/979 34
00444 https://nyu.databrary.org/volume/444 33
00943 https://nyu.databrary.org/volume/943 30
01365 https://nyu.databrary.org/volume/1365 28
00452 https://nyu.databrary.org/volume/452 26
00821 https://nyu.databrary.org/volume/821 26
01363 https://nyu.databrary.org/volume/1363 26
01143 https://nyu.databrary.org/volume/1143 24
00132 https://nyu.databrary.org/volume/132 19
00390 https://nyu.databrary.org/volume/390 18
01376 https://nyu.databrary.org/volume/1376 17
00169 https://nyu.databrary.org/volume/169 16
00956 https://nyu.databrary.org/volume/956 14
00124 https://nyu.databrary.org/volume/124 13
00217 https://nyu.databrary.org/volume/217 13
00145 https://nyu.databrary.org/volume/145 12
01442 https://nyu.databrary.org/volume/1442 12
00143 https://nyu.databrary.org/volume/143 11
00761 https://nyu.databrary.org/volume/761 11
00323 https://nyu.databrary.org/volume/323 10
00148 https://nyu.databrary.org/volume/148 9
00351 https://nyu.databrary.org/volume/351 6
01419 https://nyu.databrary.org/volume/1419 5
00194 https://nyu.databrary.org/volume/194 3
00241 https://nyu.databrary.org/volume/241 3
00881 https://nyu.databrary.org/volume/881 3
00009 https://nyu.databrary.org/volume/9 2
00116 https://nyu.databrary.org/volume/116 2
01023 https://nyu.databrary.org/volume/1023 2
00142 https://nyu.databrary.org/volume/142 1
00876 https://nyu.databrary.org/volume/876 1
01073 https://nyu.databrary.org/volume/1073 1
01688 https://nyu.databrary.org/volume/1688 1
01705 https://nyu.databrary.org/volume/1705 1

There are n= 87 shared volumes reporting participant_disability.

n participants

Code
xtabs(formula = ~ participant_disability, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_disability Freq
Acid Reflux 1
ASD 225
atypical 3
Atypical 1
atypical hand 1
baby did not pass hearing test for the right ear when he was born 1
Beckwith-Weidemenn Syndrome (no delay) 1
CMT 1
delayed speech 1
evaluated for speech 2
gross motor delay 1
Hip arthritis 1
No 23
none 3
Sprained ankle (3 wks ago) 1
ty 1
typical 5805
Typical 162
Unknown 7

Country

Volumes and sessions

Code
participant_country_df <- demo_df |>
  dplyr::filter(!is.na(participant_country)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
participant_country_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00564 https://nyu.databrary.org/volume/564 459
00390 https://nyu.databrary.org/volume/390 18

There are n= 2 shared volumes reporting participant_country.

n participants

Code
xtabs(formula = ~ participant_country, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_country Freq
ARG 3
Australia 224
CA 3
MX 3
UK 3
US 241

State

Volumes and sessions

Code
participant_state_df <- demo_df |>
  dplyr::filter(!is.na(participant_state)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
participant_state_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00184 https://nyu.databrary.org/volume/184 161
00149 https://nyu.databrary.org/volume/149 155
00207 https://nyu.databrary.org/volume/207 115
00253 https://nyu.databrary.org/volume/253 113
00150 https://nyu.databrary.org/volume/150 109
00269 https://nyu.databrary.org/volume/269 105
00073 https://nyu.databrary.org/volume/73 31
00171 https://nyu.databrary.org/volume/171 17
00390 https://nyu.databrary.org/volume/390 15

There are n= 9 shared volumes reporting participant_state.

n participants

Code
xtabs(formula = ~ participant_state, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_state Freq
Bs.As 1
Bs.As. 2
CA 3
CP 3
MB 3
NJ 2
NY 3
PA 804

Setting

Volumes and sessions

Code
participant_setting_df <- demo_df |>
  dplyr::filter(!is.na(participant_setting)) |>
  dplyr::group_by(vol_id, vol_url) |>
  dplyr::summarize(n_sessions = dplyr::n()) |>
  dplyr::ungroup() |>
  dplyr::mutate(n_vols_w_demo = dplyr::n())
`summarise()` has grouped output by 'vol_id'. You can override using the
`.groups` argument.
Code
participant_setting_df |>
  dplyr::select(vol_id, vol_url, n_sessions) |>
  dplyr::arrange(desc(n_sessions)) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
vol_id vol_url n_sessions
00322 https://nyu.databrary.org/volume/322 173
00073 https://nyu.databrary.org/volume/73 31

There are n= 2 shared volumes reporting participant_setting.

n participants

Code
xtabs(formula = ~ participant_setting, data = demo_df) |>
  knitr::kable("html") |>
  kableExtra::kable_styling() |>
  kableExtra::scroll_box(width = "100%", height = "300px")
participant_setting Freq
Lab 204