Databrary is a data library, one specialized for storing and sharing
video with a restricted audience of institutionally approved
researchers. In this vignette, we’ll see how to use
databraryr
to access data.
We’ll start simply. Let’s download a test video from volume 1 on Databrary.
The download_video()
function handles this for us.
Running it with the default parameters downloads a simple test video
with numbers than increment. The file is stored in a temporary directory
created by the file system using the function tempdir()
.
The download_video()
function returns a character string
with the full file name.
databraryr::download_video()
The function returns a path to the video on your file system. The
file name chosen, since we didn’t specify one, is the session number
9807
, an underscore, the file/asset number 1
,
another underscore, and a time stamp.
Note: You can navigate to the location where we’re downloading files by opening the following URL in your browser: https://databrary.org/volume/1/slot/9807
Depending on your operating system, the following commands may open the file so that you can play it with your default video player.
nums_vid <- download_video()
system(paste0("open ", nums_vid))
Or, you can navigate to the temporary directory to open and play the
video manually. Use tempdir()
to find the directory where
test.mp4
is stored.
Now, let’s see what other files are shared in volume 1, not just those in session (slot) 9807. This takes a moment to run because there are many files in this volume.
databraryr::list_volume_assets()
#> asset_id asset_format_id asset_duration
#> 1 9826 -800 335883
#> 2 9830 -800 4277835
#> 3 9832 -800 3107147
#> 4 22412 6 NA
#> 5 9828 -800 4425483
#> 6 9834 -800 4964011
#> 7 9836 -800 5043051
#> 8 9839 6 NA
#> 9 9838 -800 3821387
#> 10 17737 -800 10976384
#> 11 12039 6 NA
#> 12 17727 -800 2827904
#> 13 22411 6 NA
#> 14 17725 -800 1920512
#> 15 17723 -800 1594688
#> 16 22407 6 NA
#> 17 17721 -800 3977558
#> 18 17719 -800 3514603
#> 19 22408 6 NA
#> 20 22410 6 NA
#> 21 19919 -800 14939008
#> 22 22406 6 NA
#> 23 25497 6 NA
#> 24 25496 6 NA
#> 25 25495 6 NA
#> 26 26448 -800 5477483
#> 27 27227 6 NA
#> 28 28028 -800 2725723
#> 29 28026 -800 3708160
#> 30 26449 6 NA
#> 31 26452 6 NA
#> 32 26446 6 NA
#> 33 9200 5 NA
#> 34 315 6 NA
#> 35 314 6 NA
#> 36 1 -800 40000
#> 37 117035 16 NA
#> 38 153108 2 NA
#> 39 153109 2 NA
#> 40 28047 6 NA
#> 41 28048 6 NA
#> 42 28049 6 NA
#> 43 28062 -800 4835115
#> 44 28053 -800 2387051
#> 45 28055 -800 2983616
#> 46 28051 -800 2794880
#> 47 37128 6 NA
#> 48 42470 6 NA
#> 49 37138 -800 3402326
#> 50 36946 6 NA
#> 51 36945 6 NA
#> 52 36978 6 NA
#> 53 37130 -800 2450882
#> 54 37136 -800 3904128
#> 55 43940 6 NA
#> 56 38591 -800 2293056
#> 57 38593 -800 3676480
#> 58 38595 -800 2537494
#> 59 38629 6 NA
#> 60 38627 6 NA
#> 61 38626 6 NA
#> 62 38628 6 NA
#> 63 38643 -800 2760992
#> 64 42755 6 NA
#> 65 44544 6 NA
#> 66 45413 6 NA
#> 67 44774 -800 9728726
#> 68 42740 6 NA
#> 69 43077 6 NA
#> 70 46300 -800 13129280
#> 71 46104 6 NA
#> 72 60544 -800 2468587
#> 73 60546 -800 2002624
#> 74 60550 -800 3372779
#> 75 60542 -800 2058198
#> 76 60627 6 NA
#> 77 60628 6 NA
#> 78 60629 6 NA
#> 79 60630 6 NA
#> 80 61224 -800 1908544
#> 81 61222 -800 1939563
#> 82 65936 6 NA
#> 83 66015 -800 24567644
#> 84 68584 -800 2096523
#> 85 68598 -800 2857388
#> 86 68596 -800 2499595
#> 87 68600 -800 2857722
#> 88 73302 -800 2853384
#> 89 73306 -800 2859724
#> 90 73304 -800 798699
#> 91 73308 -800 2856387
#> 92 73310 -800 1435851
#> 93 73316 -800 2855887
#> 94 76809 6 NA
#> 95 76807 6 NA
#> 96 76808 6 NA
#> 97 77819 -800 743179
#> 98 77817 -800 2037970
#> 99 77811 -800 121547
#> 100 77809 -800 2853384
#> 101 77813 -800 704538
#> 102 77815 -800 2855220
#> 103 80954 -800 1367450
#> 104 79738 -800 4950334
#> 105 80898 -800 1366949
#> 106 80958 -800 1101739
#> 107 80964 -800 1251691
#> 108 80952 -800 1366382
#> 109 80956 -800 1367934
#> 110 80960 -800 1374390
#> 111 80894 -800 1366382
#> 112 80993 6 NA
#> 113 81039 -600 15823072
#> 114 80896 -800 1368451
#> 115 80962 -800 1375775
#> 116 80950 -800 1346475
#> 117 84000 -800 14589934
#> 118 95780 6 NA
#> 119 115753 -800 159595
#> 120 115739 -800 2180212
#> 121 115749 -800 504427
#> 122 115737 -600 14398328
#> 123 115747 -800 2181547
#> 124 115741 -800 2180546
#> 125 115751 -800 2179711
#> 126 115745 -800 2180712
#> 127 115695 6 NA
#> 128 115743 -800 602027
#> asset_name
#> 1 Introduction
#> 2 Databrary 1.0 plan
#> 3 Datavyu
#> 4 Slides
#> 5 Databrary demo
#> 6 Overview and Policy Update
#> 7 Private Beta demo
#> 8 04-07-Slides
#> 9 Positioning Databrary for the future
#> 10 Board Meeting
#> 11 slides
#> 12 Databrary demo
#> 13 SLIDES: Open video data sharing
#> 14 Open video data sharing
#> 15 Datavyu tutorial
#> 16 SLIDES: Best practices in video coding
#> 17 Lunch discussion
#> 18 Best practices in video coding
#> 19 Welcome slides
#> 20 SLIDES: Lunch discussion
#> 21 video
#> 22 slides
#> 23 Slides: Video reuse, management, and sharing
#> 24 Slides: Best practices in behavioral video coding and introduction to Datavyu
#> 25 Slides: Policies and best practices for sharing and managing video data
#> 26 Policies & best practices for sharing & managing video data
#> 27 Agenda
#> 28 Introduction to Datavyu: Video coding & best practices
#> 29 Introduction to Databrary
#> 30 SLIDES: Policies & best practices for sharing & managing video data
#> 31 SLIDES: Introduction to Datavyu: Video coding & best practices
#> 32 SLIDES: Introduction to Databrary
#> 33 logo
#> 34 NSF Proposal Narrative
#> 35 NIH Proposal Narrative
#> 36 counting (demo video)
#> 37 counting (demo Datavyu file)
#> 38 databrary-institutions-investigators
#> 39 volumes-citations-monthly
#> 40 SLIDES: Introduction to Databrary
#> 41 SLIDES: Policies & best practices for sharing & managing video data
#> 42 SLIDES: Introduction to Datavyu: Video coding & best practices
#> 43 Introduction to Datavyu: Video coding & best practices
#> 44 Policies & best practices for sharing & managing video data (Part 1)
#> 45 Policies & best practices for sharing & managing video data (Part 2)
#> 46 Introduction to Databrary
#> 47 SLIDES: Introduction to Databrary
#> 48 Workshop attendees survey results
#> 49 Introduction to Databrary
#> 50 SLIDES: Managing Data to Accelerate Discovery
#> 51 SLIDES: Policies for Sharing Identifiable Video
#> 52 SLIDES: Datavyu & Best Practices for Coding Video
#> 53 Policies for Sharing Identifiable Video
#> 54 Managing Data to Accelerate Discovery
#> 55 Survey results
#> 56 Policies for Sharing Identifiable Video
#> 57 Managing Data with Databrary
#> 58 Datavyu & Best Practices for Coding Video
#> 59 SLIDES: Datavyu & Best Practices for Coding Video
#> 60 SLIDES: Policies for Sharing Identifiable Video
#> 61 SLIDES: Introduction to Databrary
#> 62 SLIDES: Managing Data with Databrary
#> 63 Introduction to Databrary
#> 64 SLIDES: Managing Data with Databrary
#> 65 SLIDES: Introduction to Databrary
#> 66 SLIDES: Datavyu & Best Practices for Coding Video
#> 67 Databrary Pre-conference
#> 68 SLIDES: Policies for Sharing Video Data
#> 69 ICIS Survey Results
#> 70 VIDEO: Databrary Board Meeting - June 13, 2016
#> 71 SLIDES: Databrary Board Meeting - June 13, 2016
#> 72 Policies for sharing video data
#> 73 Managing data with Databrary
#> 74 Datavyu & best Practices for coding video
#> 75 Introduction to Databrary
#> 76 SLIDES: Introduction to Databrary
#> 77 SLIDES: Policies for Sharing
#> 78 SLIDES: Managing data with Databrary
#> 79 SLIDES: Datavyu & best practices for coding video
#> 80 Policies for sharing data
#> 81 Introduction to Databrary
#> 82 PLAY workshop slides 2016-12-16
#> 83 PLAY workshop videocast 2016-12-16
#> 84 4/4
#> 85 2/4
#> 86 1/4
#> 87 3/4
#> 88 00002
#> 89 00003
#> 90 00004
#> 91 00005
#> 92 00006
#> 93 SRCD_2017_The_Science_of_Play_and_Learning
#> 94 3-Datavyu-2017-04-30-aera
#> 95 1-intro-2017-04-30-aera
#> 96 2-policiesMgmt-2017-04-30-aera
#> 97 00016
#> 98 000152
#> 99 00014
#> 100 00012
#> 101 000151
#> 102 00013
#> 103 00024
#> 104 Advisory Board Meeting-2017-06-09 Part-2.mp4
#> 105 00021
#> 106 00026
#> 107 00029
#> 108 00023
#> 109 00025
#> 110 00027
#> 111 00019
#> 112 Advisory Board Meeting Presentation_2017-06-09
#> 113 Heiman_Steinhardt Databrary_060917_GCASL CQ_PMO_Zoom4_Nus_bk# 1036791
#> 114 00020
#> 115 00028
#> 116 00022
#> 117 DatabraryAdvisoryBoardMeeting2017
#> 118 CDS_Databrary_Datavyu_2017-10-13_Final.key
#> 119 Advisory Board Meeting_2018_Part6
#> 120 Advisory Board Meeting_2018_Part7
#> 121 Advisory Board Meeting_2018_Part8
#> 122 Databrary Advisory Board_2018-03-26
#> 123 Advisory Board Meeting_2018_Part2
#> 124 Advisory Board Meeting_2018_Part5
#> 125 Advisory Board Meeting_2018_Part1
#> 126 Advisory Board Meeting_2018_Part4
#> 127 Databrary_Advisory_Board_Meeting_slides-2018-03-26
#> 128 Advisory Board Meeting_2018_Part3
#> asset_permission asset_size session_id session_date session_release
#> 1 1 88610655 6256 2013-10-28 3
#> 2 1 899912341 6256 2013-10-28 3
#> 3 1 764340542 6256 2013-10-28 3
#> 4 1 4573426 6256 2013-10-28 3
#> 5 1 917124852 6256 2013-10-28 3
#> 6 1 1301079971 6257 2014-04-07 3
#> 7 1 1419151887 6257 2014-04-07 3
#> 8 1 3013342 6257 2014-04-07 3
#> 9 1 882417129 6257 2014-04-07 3
#> 10 1 5316455384 6540 2014-10-17 3
#> 11 1 10192940 6540 2014-10-17 3
#> 12 1 1079191541 7821 2015-03-18 3
#> 13 1 4158160 7821 2015-03-18 3
#> 14 1 710384623 7821 2015-03-18 3
#> 15 1 574598972 7821 2015-03-18 3
#> 16 1 2924252 7821 2015-03-18 3
#> 17 1 1602298195 7821 2015-03-18 3
#> 18 1 1384301751 7821 2015-03-18 3
#> 19 1 304566 7821 2015-03-18 3
#> 20 1 6899381 7821 2015-03-18 3
#> 21 1 5561649547 8460 2015-05-11 3
#> 22 1 24014506 8460 2015-05-11 3
#> 23 1 19543511 9224 2015-09-18 3
#> 24 1 11216184 9224 2015-09-18 3
#> 25 1 6947725 9224 2015-09-18 3
#> 26 1 2059896165 9578 2015-10-08 3
#> 27 1 55248 9578 2015-10-08 3
#> 28 1 717531830 9578 2015-10-08 3
#> 29 1 969574682 9578 2015-10-08 3
#> 30 1 18074689 9578 2015-10-08 3
#> 31 1 16562761 9578 2015-10-08 3
#> 32 1 8502489 9578 2015-10-08 3
#> 33 1 104419 9807 <NA> NA
#> 34 1 4120930 9807 <NA> NA
#> 35 1 3826718 9807 <NA> NA
#> 36 1 394499 9807 <NA> NA
#> 37 1 1030 9807 <NA> NA
#> 38 1 1826 9807 <NA> NA
#> 39 1 417 9807 <NA> NA
#> 40 1 9500786 10068 2015-11-20 3
#> 41 1 18069955 10068 2015-11-20 3
#> 42 1 17821836 10068 2015-11-20 3
#> 43 1 1550955220 10068 2015-11-20 3
#> 44 1 763350644 10068 2015-11-20 3
#> 45 1 1044753106 10068 2015-11-20 3
#> 46 1 886710056 10068 2015-11-20 3
#> 47 1 22240020 10991 2016-03-25 3
#> 48 1 402918 10991 2016-03-25 3
#> 49 1 1190956598 10991 2016-03-25 3
#> 50 1 13901204 10991 2016-03-25 3
#> 51 1 2225737 10991 2016-03-25 3
#> 52 1 16143550 10991 2016-03-25 3
#> 53 1 824306229 10991 2016-03-25 3
#> 54 1 1412799175 10991 2016-03-25 3
#> 55 1 191095 11362 2016-04-15 3
#> 56 1 622855933 11362 2016-04-15 3
#> 57 1 1035603796 11362 2016-04-15 3
#> 58 1 857979902 11362 2016-04-15 3
#> 59 1 11171502 11362 2016-04-15 3
#> 60 1 4265477 11362 2016-04-15 3
#> 61 1 17971722 11362 2016-04-15 3
#> 62 1 10040436 11362 2016-04-15 3
#> 63 1 706313005 11362 2016-04-15 3
#> 64 1 7741745 11660 2016-05-25 3
#> 65 1 10732100 11660 2016-05-25 3
#> 66 1 15475455 11660 2016-05-25 3
#> 67 1 5207302273 11660 2016-05-25 3
#> 68 1 4238406 11660 2016-05-25 3
#> 69 1 1772791 11660 2016-05-25 3
#> 70 1 4651981876 11886 2016-06-13 3
#> 71 1 19602134 11886 2016-06-13 3
#> 72 1 795931994 14297 2016-10-14 3
#> 73 1 627556299 14297 2016-10-14 3
#> 74 1 1033985826 14297 2016-10-14 3
#> 75 1 607629550 14297 2016-10-14 3
#> 76 1 10732100 14297 2016-10-14 3
#> 77 1 4238406 14297 2016-10-14 3
#> 78 1 7741745 14297 2016-10-14 3
#> 79 1 15475455 14297 2016-10-14 3
#> 80 1 687136253 14551 2016-10-21 3
#> 81 1 671824312 14551 2016-10-21 3
#> 82 1 278432416 15663 2016-12-16 3
#> 83 1 1332848036 15663 2016-12-16 3
#> 84 1 984178185 16104 2017-02-03 3
#> 85 1 1322485833 16104 2017-02-03 3
#> 86 1 1251324058 16104 2017-02-03 3
#> 87 1 1310253381 16104 2017-02-03 3
#> 88 1 1141378800 16891 2017-04-05 3
#> 89 1 1109757036 16891 2017-04-05 3
#> 90 1 308336133 16891 2017-04-05 3
#> 91 1 1077537629 16891 2017-04-05 3
#> 92 1 555319245 16891 2017-04-05 3
#> 93 1 1185980540 16894 2017-04-05 3
#> 94 1 11296910 17187 2017-04-30 3
#> 95 1 9899927 17187 2017-04-30 3
#> 96 1 8188127 17187 2017-04-30 3
#> 97 1 252821639 17417 2017-05-15 3
#> 98 1 695084769 17417 2017-05-15 3
#> 99 1 39116816 17417 2017-05-15 3
#> 100 1 977096783 17417 2017-05-15 3
#> 101 1 243847194 17417 2017-05-15 3
#> 102 1 943655212 17417 2017-05-15 3
#> 103 1 1040993535 17886 2017-06-09 3
#> 104 1 86403462 17886 2017-06-09 3
#> 105 1 1191221405 17886 2017-06-09 3
#> 106 1 946159516 17886 2017-06-09 3
#> 107 1 1029314077 17886 2017-06-09 3
#> 108 1 1113502210 17886 2017-06-09 3
#> 109 1 1111936525 17886 2017-06-09 3
#> 110 1 1074824135 17886 2017-06-09 3
#> 111 1 1185269159 17886 2017-06-09 3
#> 112 1 81457940 17886 2017-06-09 3
#> 113 1 292650423 17886 2017-06-09 3
#> 114 1 1244239760 17886 2017-06-09 3
#> 115 1 1093669899 17886 2017-06-09 3
#> 116 1 1237461468 17886 2017-06-09 3
#> 117 1 4611531493 17886 2017-06-09 3
#> 118 1 24630245 21077 2017-10-13 3
#> 119 1 184972983 25952 2018-03-26 3
#> 120 1 1985795461 25952 2018-03-26 3
#> 121 1 554267042 25952 2018-03-26 3
#> 122 1 226542146 25952 2018-03-26 3
#> 123 1 1976644381 25952 2018-03-26 3
#> 124 1 2084960359 25952 2018-03-26 3
#> 125 1 1886564537 25952 2018-03-26 3
#> 126 1 2321264233 25952 2018-03-26 3
#> 127 1 53661203 25952 2018-03-26 3
#> 128 1 581869073 25952 2018-03-26 3
#> format_mimetype format_extension format_name
#> 1 video/mp4 mp4 MPEG-4 video
#> 2 video/mp4 mp4 MPEG-4 video
#> 3 video/mp4 mp4 MPEG-4 video
#> 4 application/pdf pdf Portable document
#> 5 video/mp4 mp4 MPEG-4 video
#> 6 video/mp4 mp4 MPEG-4 video
#> 7 video/mp4 mp4 MPEG-4 video
#> 8 application/pdf pdf Portable document
#> 9 video/mp4 mp4 MPEG-4 video
#> 10 video/mp4 mp4 MPEG-4 video
#> 11 application/pdf pdf Portable document
#> 12 video/mp4 mp4 MPEG-4 video
#> 13 application/pdf pdf Portable document
#> 14 video/mp4 mp4 MPEG-4 video
#> 15 video/mp4 mp4 MPEG-4 video
#> 16 application/pdf pdf Portable document
#> 17 video/mp4 mp4 MPEG-4 video
#> 18 video/mp4 mp4 MPEG-4 video
#> 19 application/pdf pdf Portable document
#> 20 application/pdf pdf Portable document
#> 21 video/mp4 mp4 MPEG-4 video
#> 22 application/pdf pdf Portable document
#> 23 application/pdf pdf Portable document
#> 24 application/pdf pdf Portable document
#> 25 application/pdf pdf Portable document
#> 26 video/mp4 mp4 MPEG-4 video
#> 27 application/pdf pdf Portable document
#> 28 video/mp4 mp4 MPEG-4 video
#> 29 video/mp4 mp4 MPEG-4 video
#> 30 application/pdf pdf Portable document
#> 31 application/pdf pdf Portable document
#> 32 application/pdf pdf Portable document
#> 33 image/png png Portable network graphics
#> 34 application/pdf pdf Portable document
#> 35 application/pdf pdf Portable document
#> 36 video/mp4 mp4 MPEG-4 video
#> 37 application/vnd.datavyu opf Datavyu
#> 38 text/csv csv Comma-separated values
#> 39 text/csv csv Comma-separated values
#> 40 application/pdf pdf Portable document
#> 41 application/pdf pdf Portable document
#> 42 application/pdf pdf Portable document
#> 43 video/mp4 mp4 MPEG-4 video
#> 44 video/mp4 mp4 MPEG-4 video
#> 45 video/mp4 mp4 MPEG-4 video
#> 46 video/mp4 mp4 MPEG-4 video
#> 47 application/pdf pdf Portable document
#> 48 application/pdf pdf Portable document
#> 49 video/mp4 mp4 MPEG-4 video
#> 50 application/pdf pdf Portable document
#> 51 application/pdf pdf Portable document
#> 52 application/pdf pdf Portable document
#> 53 video/mp4 mp4 MPEG-4 video
#> 54 video/mp4 mp4 MPEG-4 video
#> 55 application/pdf pdf Portable document
#> 56 video/mp4 mp4 MPEG-4 video
#> 57 video/mp4 mp4 MPEG-4 video
#> 58 video/mp4 mp4 MPEG-4 video
#> 59 application/pdf pdf Portable document
#> 60 application/pdf pdf Portable document
#> 61 application/pdf pdf Portable document
#> 62 application/pdf pdf Portable document
#> 63 video/mp4 mp4 MPEG-4 video
#> 64 application/pdf pdf Portable document
#> 65 application/pdf pdf Portable document
#> 66 application/pdf pdf Portable document
#> 67 video/mp4 mp4 MPEG-4 video
#> 68 application/pdf pdf Portable document
#> 69 application/pdf pdf Portable document
#> 70 video/mp4 mp4 MPEG-4 video
#> 71 application/pdf pdf Portable document
#> 72 video/mp4 mp4 MPEG-4 video
#> 73 video/mp4 mp4 MPEG-4 video
#> 74 video/mp4 mp4 MPEG-4 video
#> 75 video/mp4 mp4 MPEG-4 video
#> 76 application/pdf pdf Portable document
#> 77 application/pdf pdf Portable document
#> 78 application/pdf pdf Portable document
#> 79 application/pdf pdf Portable document
#> 80 video/mp4 mp4 MPEG-4 video
#> 81 video/mp4 mp4 MPEG-4 video
#> 82 application/pdf pdf Portable document
#> 83 video/mp4 mp4 MPEG-4 video
#> 84 video/mp4 mp4 MPEG-4 video
#> 85 video/mp4 mp4 MPEG-4 video
#> 86 video/mp4 mp4 MPEG-4 video
#> 87 video/mp4 mp4 MPEG-4 video
#> 88 video/mp4 mp4 MPEG-4 video
#> 89 video/mp4 mp4 MPEG-4 video
#> 90 video/mp4 mp4 MPEG-4 video
#> 91 video/mp4 mp4 MPEG-4 video
#> 92 video/mp4 mp4 MPEG-4 video
#> 93 video/mp4 mp4 MPEG-4 video
#> 94 application/pdf pdf Portable document
#> 95 application/pdf pdf Portable document
#> 96 application/pdf pdf Portable document
#> 97 video/mp4 mp4 MPEG-4 video
#> 98 video/mp4 mp4 MPEG-4 video
#> 99 video/mp4 mp4 MPEG-4 video
#> 100 video/mp4 mp4 MPEG-4 video
#> 101 video/mp4 mp4 MPEG-4 video
#> 102 video/mp4 mp4 MPEG-4 video
#> 103 video/mp4 mp4 MPEG-4 video
#> 104 video/mp4 mp4 MPEG-4 video
#> 105 video/mp4 mp4 MPEG-4 video
#> 106 video/mp4 mp4 MPEG-4 video
#> 107 video/mp4 mp4 MPEG-4 video
#> 108 video/mp4 mp4 MPEG-4 video
#> 109 video/mp4 mp4 MPEG-4 video
#> 110 video/mp4 mp4 MPEG-4 video
#> 111 video/mp4 mp4 MPEG-4 video
#> 112 application/pdf pdf Portable document
#> 113 audio/mpeg mp3 MPEG-1 or MPEG-2 audio layer III
#> 114 video/mp4 mp4 MPEG-4 video
#> 115 video/mp4 mp4 MPEG-4 video
#> 116 video/mp4 mp4 MPEG-4 video
#> 117 video/mp4 mp4 MPEG-4 video
#> 118 application/pdf pdf Portable document
#> 119 video/mp4 mp4 MPEG-4 video
#> 120 video/mp4 mp4 MPEG-4 video
#> 121 video/mp4 mp4 MPEG-4 video
#> 122 audio/mpeg mp3 MPEG-1 or MPEG-2 audio layer III
#> 123 video/mp4 mp4 MPEG-4 video
#> 124 video/mp4 mp4 MPEG-4 video
#> 125 video/mp4 mp4 MPEG-4 video
#> 126 video/mp4 mp4 MPEG-4 video
#> 127 application/pdf pdf Portable document
#> 128 video/mp4 mp4 MPEG-4 video
NOTE: These commands return public data, that is,
data we do not need an account or log-in to see. We have not provided an
httr2
request parameter, so the function generates a
default one. We can see this happening if we set
vb = TRUE
.
databraryr::list_volume_assets(vb = TRUE)
#> NULL request object. Will generate default.
#> Not logged in. Only public information will be returned.
#> Retrieving data for vol_id 1.
#> Extracting asset info...
#> asset_id asset_format_id asset_duration
#> 1 9826 -800 335883
#> 2 9830 -800 4277835
#> 3 9832 -800 3107147
#> 4 22412 6 NA
#> 5 9828 -800 4425483
#> 6 9834 -800 4964011
#> 7 9836 -800 5043051
#> 8 9839 6 NA
#> 9 9838 -800 3821387
#> 10 17737 -800 10976384
#> 11 12039 6 NA
#> 12 17727 -800 2827904
#> 13 22411 6 NA
#> 14 17725 -800 1920512
#> 15 17723 -800 1594688
#> 16 22407 6 NA
#> 17 17721 -800 3977558
#> 18 17719 -800 3514603
#> 19 22408 6 NA
#> 20 22410 6 NA
#> 21 19919 -800 14939008
#> 22 22406 6 NA
#> 23 25497 6 NA
#> 24 25496 6 NA
#> 25 25495 6 NA
#> 26 26448 -800 5477483
#> 27 27227 6 NA
#> 28 28028 -800 2725723
#> 29 28026 -800 3708160
#> 30 26449 6 NA
#> 31 26452 6 NA
#> 32 26446 6 NA
#> 33 9200 5 NA
#> 34 315 6 NA
#> 35 314 6 NA
#> 36 1 -800 40000
#> 37 117035 16 NA
#> 38 153108 2 NA
#> 39 153109 2 NA
#> 40 28047 6 NA
#> 41 28048 6 NA
#> 42 28049 6 NA
#> 43 28062 -800 4835115
#> 44 28053 -800 2387051
#> 45 28055 -800 2983616
#> 46 28051 -800 2794880
#> 47 37128 6 NA
#> 48 42470 6 NA
#> 49 37138 -800 3402326
#> 50 36946 6 NA
#> 51 36945 6 NA
#> 52 36978 6 NA
#> 53 37130 -800 2450882
#> 54 37136 -800 3904128
#> 55 43940 6 NA
#> 56 38591 -800 2293056
#> 57 38593 -800 3676480
#> 58 38595 -800 2537494
#> 59 38629 6 NA
#> 60 38627 6 NA
#> 61 38626 6 NA
#> 62 38628 6 NA
#> 63 38643 -800 2760992
#> 64 42755 6 NA
#> 65 44544 6 NA
#> 66 45413 6 NA
#> 67 44774 -800 9728726
#> 68 42740 6 NA
#> 69 43077 6 NA
#> 70 46300 -800 13129280
#> 71 46104 6 NA
#> 72 60544 -800 2468587
#> 73 60546 -800 2002624
#> 74 60550 -800 3372779
#> 75 60542 -800 2058198
#> 76 60627 6 NA
#> 77 60628 6 NA
#> 78 60629 6 NA
#> 79 60630 6 NA
#> 80 61224 -800 1908544
#> 81 61222 -800 1939563
#> 82 65936 6 NA
#> 83 66015 -800 24567644
#> 84 68584 -800 2096523
#> 85 68598 -800 2857388
#> 86 68596 -800 2499595
#> 87 68600 -800 2857722
#> 88 73302 -800 2853384
#> 89 73306 -800 2859724
#> 90 73304 -800 798699
#> 91 73308 -800 2856387
#> 92 73310 -800 1435851
#> 93 73316 -800 2855887
#> 94 76809 6 NA
#> 95 76807 6 NA
#> 96 76808 6 NA
#> 97 77819 -800 743179
#> 98 77817 -800 2037970
#> 99 77811 -800 121547
#> 100 77809 -800 2853384
#> 101 77813 -800 704538
#> 102 77815 -800 2855220
#> 103 80954 -800 1367450
#> 104 79738 -800 4950334
#> 105 80898 -800 1366949
#> 106 80958 -800 1101739
#> 107 80964 -800 1251691
#> 108 80952 -800 1366382
#> 109 80956 -800 1367934
#> 110 80960 -800 1374390
#> 111 80894 -800 1366382
#> 112 80993 6 NA
#> 113 81039 -600 15823072
#> 114 80896 -800 1368451
#> 115 80962 -800 1375775
#> 116 80950 -800 1346475
#> 117 84000 -800 14589934
#> 118 95780 6 NA
#> 119 115753 -800 159595
#> 120 115739 -800 2180212
#> 121 115749 -800 504427
#> 122 115737 -600 14398328
#> 123 115747 -800 2181547
#> 124 115741 -800 2180546
#> 125 115751 -800 2179711
#> 126 115745 -800 2180712
#> 127 115695 6 NA
#> 128 115743 -800 602027
#> asset_name
#> 1 Introduction
#> 2 Databrary 1.0 plan
#> 3 Datavyu
#> 4 Slides
#> 5 Databrary demo
#> 6 Overview and Policy Update
#> 7 Private Beta demo
#> 8 04-07-Slides
#> 9 Positioning Databrary for the future
#> 10 Board Meeting
#> 11 slides
#> 12 Databrary demo
#> 13 SLIDES: Open video data sharing
#> 14 Open video data sharing
#> 15 Datavyu tutorial
#> 16 SLIDES: Best practices in video coding
#> 17 Lunch discussion
#> 18 Best practices in video coding
#> 19 Welcome slides
#> 20 SLIDES: Lunch discussion
#> 21 video
#> 22 slides
#> 23 Slides: Video reuse, management, and sharing
#> 24 Slides: Best practices in behavioral video coding and introduction to Datavyu
#> 25 Slides: Policies and best practices for sharing and managing video data
#> 26 Policies & best practices for sharing & managing video data
#> 27 Agenda
#> 28 Introduction to Datavyu: Video coding & best practices
#> 29 Introduction to Databrary
#> 30 SLIDES: Policies & best practices for sharing & managing video data
#> 31 SLIDES: Introduction to Datavyu: Video coding & best practices
#> 32 SLIDES: Introduction to Databrary
#> 33 logo
#> 34 NSF Proposal Narrative
#> 35 NIH Proposal Narrative
#> 36 counting (demo video)
#> 37 counting (demo Datavyu file)
#> 38 databrary-institutions-investigators
#> 39 volumes-citations-monthly
#> 40 SLIDES: Introduction to Databrary
#> 41 SLIDES: Policies & best practices for sharing & managing video data
#> 42 SLIDES: Introduction to Datavyu: Video coding & best practices
#> 43 Introduction to Datavyu: Video coding & best practices
#> 44 Policies & best practices for sharing & managing video data (Part 1)
#> 45 Policies & best practices for sharing & managing video data (Part 2)
#> 46 Introduction to Databrary
#> 47 SLIDES: Introduction to Databrary
#> 48 Workshop attendees survey results
#> 49 Introduction to Databrary
#> 50 SLIDES: Managing Data to Accelerate Discovery
#> 51 SLIDES: Policies for Sharing Identifiable Video
#> 52 SLIDES: Datavyu & Best Practices for Coding Video
#> 53 Policies for Sharing Identifiable Video
#> 54 Managing Data to Accelerate Discovery
#> 55 Survey results
#> 56 Policies for Sharing Identifiable Video
#> 57 Managing Data with Databrary
#> 58 Datavyu & Best Practices for Coding Video
#> 59 SLIDES: Datavyu & Best Practices for Coding Video
#> 60 SLIDES: Policies for Sharing Identifiable Video
#> 61 SLIDES: Introduction to Databrary
#> 62 SLIDES: Managing Data with Databrary
#> 63 Introduction to Databrary
#> 64 SLIDES: Managing Data with Databrary
#> 65 SLIDES: Introduction to Databrary
#> 66 SLIDES: Datavyu & Best Practices for Coding Video
#> 67 Databrary Pre-conference
#> 68 SLIDES: Policies for Sharing Video Data
#> 69 ICIS Survey Results
#> 70 VIDEO: Databrary Board Meeting - June 13, 2016
#> 71 SLIDES: Databrary Board Meeting - June 13, 2016
#> 72 Policies for sharing video data
#> 73 Managing data with Databrary
#> 74 Datavyu & best Practices for coding video
#> 75 Introduction to Databrary
#> 76 SLIDES: Introduction to Databrary
#> 77 SLIDES: Policies for Sharing
#> 78 SLIDES: Managing data with Databrary
#> 79 SLIDES: Datavyu & best practices for coding video
#> 80 Policies for sharing data
#> 81 Introduction to Databrary
#> 82 PLAY workshop slides 2016-12-16
#> 83 PLAY workshop videocast 2016-12-16
#> 84 4/4
#> 85 2/4
#> 86 1/4
#> 87 3/4
#> 88 00002
#> 89 00003
#> 90 00004
#> 91 00005
#> 92 00006
#> 93 SRCD_2017_The_Science_of_Play_and_Learning
#> 94 3-Datavyu-2017-04-30-aera
#> 95 1-intro-2017-04-30-aera
#> 96 2-policiesMgmt-2017-04-30-aera
#> 97 00016
#> 98 000152
#> 99 00014
#> 100 00012
#> 101 000151
#> 102 00013
#> 103 00024
#> 104 Advisory Board Meeting-2017-06-09 Part-2.mp4
#> 105 00021
#> 106 00026
#> 107 00029
#> 108 00023
#> 109 00025
#> 110 00027
#> 111 00019
#> 112 Advisory Board Meeting Presentation_2017-06-09
#> 113 Heiman_Steinhardt Databrary_060917_GCASL CQ_PMO_Zoom4_Nus_bk# 1036791
#> 114 00020
#> 115 00028
#> 116 00022
#> 117 DatabraryAdvisoryBoardMeeting2017
#> 118 CDS_Databrary_Datavyu_2017-10-13_Final.key
#> 119 Advisory Board Meeting_2018_Part6
#> 120 Advisory Board Meeting_2018_Part7
#> 121 Advisory Board Meeting_2018_Part8
#> 122 Databrary Advisory Board_2018-03-26
#> 123 Advisory Board Meeting_2018_Part2
#> 124 Advisory Board Meeting_2018_Part5
#> 125 Advisory Board Meeting_2018_Part1
#> 126 Advisory Board Meeting_2018_Part4
#> 127 Databrary_Advisory_Board_Meeting_slides-2018-03-26
#> 128 Advisory Board Meeting_2018_Part3
#> asset_permission asset_size session_id session_date session_release
#> 1 1 88610655 6256 2013-10-28 3
#> 2 1 899912341 6256 2013-10-28 3
#> 3 1 764340542 6256 2013-10-28 3
#> 4 1 4573426 6256 2013-10-28 3
#> 5 1 917124852 6256 2013-10-28 3
#> 6 1 1301079971 6257 2014-04-07 3
#> 7 1 1419151887 6257 2014-04-07 3
#> 8 1 3013342 6257 2014-04-07 3
#> 9 1 882417129 6257 2014-04-07 3
#> 10 1 5316455384 6540 2014-10-17 3
#> 11 1 10192940 6540 2014-10-17 3
#> 12 1 1079191541 7821 2015-03-18 3
#> 13 1 4158160 7821 2015-03-18 3
#> 14 1 710384623 7821 2015-03-18 3
#> 15 1 574598972 7821 2015-03-18 3
#> 16 1 2924252 7821 2015-03-18 3
#> 17 1 1602298195 7821 2015-03-18 3
#> 18 1 1384301751 7821 2015-03-18 3
#> 19 1 304566 7821 2015-03-18 3
#> 20 1 6899381 7821 2015-03-18 3
#> 21 1 5561649547 8460 2015-05-11 3
#> 22 1 24014506 8460 2015-05-11 3
#> 23 1 19543511 9224 2015-09-18 3
#> 24 1 11216184 9224 2015-09-18 3
#> 25 1 6947725 9224 2015-09-18 3
#> 26 1 2059896165 9578 2015-10-08 3
#> 27 1 55248 9578 2015-10-08 3
#> 28 1 717531830 9578 2015-10-08 3
#> 29 1 969574682 9578 2015-10-08 3
#> 30 1 18074689 9578 2015-10-08 3
#> 31 1 16562761 9578 2015-10-08 3
#> 32 1 8502489 9578 2015-10-08 3
#> 33 1 104419 9807 <NA> NA
#> 34 1 4120930 9807 <NA> NA
#> 35 1 3826718 9807 <NA> NA
#> 36 1 394499 9807 <NA> NA
#> 37 1 1030 9807 <NA> NA
#> 38 1 1826 9807 <NA> NA
#> 39 1 417 9807 <NA> NA
#> 40 1 9500786 10068 2015-11-20 3
#> 41 1 18069955 10068 2015-11-20 3
#> 42 1 17821836 10068 2015-11-20 3
#> 43 1 1550955220 10068 2015-11-20 3
#> 44 1 763350644 10068 2015-11-20 3
#> 45 1 1044753106 10068 2015-11-20 3
#> 46 1 886710056 10068 2015-11-20 3
#> 47 1 22240020 10991 2016-03-25 3
#> 48 1 402918 10991 2016-03-25 3
#> 49 1 1190956598 10991 2016-03-25 3
#> 50 1 13901204 10991 2016-03-25 3
#> 51 1 2225737 10991 2016-03-25 3
#> 52 1 16143550 10991 2016-03-25 3
#> 53 1 824306229 10991 2016-03-25 3
#> 54 1 1412799175 10991 2016-03-25 3
#> 55 1 191095 11362 2016-04-15 3
#> 56 1 622855933 11362 2016-04-15 3
#> 57 1 1035603796 11362 2016-04-15 3
#> 58 1 857979902 11362 2016-04-15 3
#> 59 1 11171502 11362 2016-04-15 3
#> 60 1 4265477 11362 2016-04-15 3
#> 61 1 17971722 11362 2016-04-15 3
#> 62 1 10040436 11362 2016-04-15 3
#> 63 1 706313005 11362 2016-04-15 3
#> 64 1 7741745 11660 2016-05-25 3
#> 65 1 10732100 11660 2016-05-25 3
#> 66 1 15475455 11660 2016-05-25 3
#> 67 1 5207302273 11660 2016-05-25 3
#> 68 1 4238406 11660 2016-05-25 3
#> 69 1 1772791 11660 2016-05-25 3
#> 70 1 4651981876 11886 2016-06-13 3
#> 71 1 19602134 11886 2016-06-13 3
#> 72 1 795931994 14297 2016-10-14 3
#> 73 1 627556299 14297 2016-10-14 3
#> 74 1 1033985826 14297 2016-10-14 3
#> 75 1 607629550 14297 2016-10-14 3
#> 76 1 10732100 14297 2016-10-14 3
#> 77 1 4238406 14297 2016-10-14 3
#> 78 1 7741745 14297 2016-10-14 3
#> 79 1 15475455 14297 2016-10-14 3
#> 80 1 687136253 14551 2016-10-21 3
#> 81 1 671824312 14551 2016-10-21 3
#> 82 1 278432416 15663 2016-12-16 3
#> 83 1 1332848036 15663 2016-12-16 3
#> 84 1 984178185 16104 2017-02-03 3
#> 85 1 1322485833 16104 2017-02-03 3
#> 86 1 1251324058 16104 2017-02-03 3
#> 87 1 1310253381 16104 2017-02-03 3
#> 88 1 1141378800 16891 2017-04-05 3
#> 89 1 1109757036 16891 2017-04-05 3
#> 90 1 308336133 16891 2017-04-05 3
#> 91 1 1077537629 16891 2017-04-05 3
#> 92 1 555319245 16891 2017-04-05 3
#> 93 1 1185980540 16894 2017-04-05 3
#> 94 1 11296910 17187 2017-04-30 3
#> 95 1 9899927 17187 2017-04-30 3
#> 96 1 8188127 17187 2017-04-30 3
#> 97 1 252821639 17417 2017-05-15 3
#> 98 1 695084769 17417 2017-05-15 3
#> 99 1 39116816 17417 2017-05-15 3
#> 100 1 977096783 17417 2017-05-15 3
#> 101 1 243847194 17417 2017-05-15 3
#> 102 1 943655212 17417 2017-05-15 3
#> 103 1 1040993535 17886 2017-06-09 3
#> 104 1 86403462 17886 2017-06-09 3
#> 105 1 1191221405 17886 2017-06-09 3
#> 106 1 946159516 17886 2017-06-09 3
#> 107 1 1029314077 17886 2017-06-09 3
#> 108 1 1113502210 17886 2017-06-09 3
#> 109 1 1111936525 17886 2017-06-09 3
#> 110 1 1074824135 17886 2017-06-09 3
#> 111 1 1185269159 17886 2017-06-09 3
#> 112 1 81457940 17886 2017-06-09 3
#> 113 1 292650423 17886 2017-06-09 3
#> 114 1 1244239760 17886 2017-06-09 3
#> 115 1 1093669899 17886 2017-06-09 3
#> 116 1 1237461468 17886 2017-06-09 3
#> 117 1 4611531493 17886 2017-06-09 3
#> 118 1 24630245 21077 2017-10-13 3
#> 119 1 184972983 25952 2018-03-26 3
#> 120 1 1985795461 25952 2018-03-26 3
#> 121 1 554267042 25952 2018-03-26 3
#> 122 1 226542146 25952 2018-03-26 3
#> 123 1 1976644381 25952 2018-03-26 3
#> 124 1 2084960359 25952 2018-03-26 3
#> 125 1 1886564537 25952 2018-03-26 3
#> 126 1 2321264233 25952 2018-03-26 3
#> 127 1 53661203 25952 2018-03-26 3
#> 128 1 581869073 25952 2018-03-26 3
#> format_mimetype format_extension format_name
#> 1 video/mp4 mp4 MPEG-4 video
#> 2 video/mp4 mp4 MPEG-4 video
#> 3 video/mp4 mp4 MPEG-4 video
#> 4 application/pdf pdf Portable document
#> 5 video/mp4 mp4 MPEG-4 video
#> 6 video/mp4 mp4 MPEG-4 video
#> 7 video/mp4 mp4 MPEG-4 video
#> 8 application/pdf pdf Portable document
#> 9 video/mp4 mp4 MPEG-4 video
#> 10 video/mp4 mp4 MPEG-4 video
#> 11 application/pdf pdf Portable document
#> 12 video/mp4 mp4 MPEG-4 video
#> 13 application/pdf pdf Portable document
#> 14 video/mp4 mp4 MPEG-4 video
#> 15 video/mp4 mp4 MPEG-4 video
#> 16 application/pdf pdf Portable document
#> 17 video/mp4 mp4 MPEG-4 video
#> 18 video/mp4 mp4 MPEG-4 video
#> 19 application/pdf pdf Portable document
#> 20 application/pdf pdf Portable document
#> 21 video/mp4 mp4 MPEG-4 video
#> 22 application/pdf pdf Portable document
#> 23 application/pdf pdf Portable document
#> 24 application/pdf pdf Portable document
#> 25 application/pdf pdf Portable document
#> 26 video/mp4 mp4 MPEG-4 video
#> 27 application/pdf pdf Portable document
#> 28 video/mp4 mp4 MPEG-4 video
#> 29 video/mp4 mp4 MPEG-4 video
#> 30 application/pdf pdf Portable document
#> 31 application/pdf pdf Portable document
#> 32 application/pdf pdf Portable document
#> 33 image/png png Portable network graphics
#> 34 application/pdf pdf Portable document
#> 35 application/pdf pdf Portable document
#> 36 video/mp4 mp4 MPEG-4 video
#> 37 application/vnd.datavyu opf Datavyu
#> 38 text/csv csv Comma-separated values
#> 39 text/csv csv Comma-separated values
#> 40 application/pdf pdf Portable document
#> 41 application/pdf pdf Portable document
#> 42 application/pdf pdf Portable document
#> 43 video/mp4 mp4 MPEG-4 video
#> 44 video/mp4 mp4 MPEG-4 video
#> 45 video/mp4 mp4 MPEG-4 video
#> 46 video/mp4 mp4 MPEG-4 video
#> 47 application/pdf pdf Portable document
#> 48 application/pdf pdf Portable document
#> 49 video/mp4 mp4 MPEG-4 video
#> 50 application/pdf pdf Portable document
#> 51 application/pdf pdf Portable document
#> 52 application/pdf pdf Portable document
#> 53 video/mp4 mp4 MPEG-4 video
#> 54 video/mp4 mp4 MPEG-4 video
#> 55 application/pdf pdf Portable document
#> 56 video/mp4 mp4 MPEG-4 video
#> 57 video/mp4 mp4 MPEG-4 video
#> 58 video/mp4 mp4 MPEG-4 video
#> 59 application/pdf pdf Portable document
#> 60 application/pdf pdf Portable document
#> 61 application/pdf pdf Portable document
#> 62 application/pdf pdf Portable document
#> 63 video/mp4 mp4 MPEG-4 video
#> 64 application/pdf pdf Portable document
#> 65 application/pdf pdf Portable document
#> 66 application/pdf pdf Portable document
#> 67 video/mp4 mp4 MPEG-4 video
#> 68 application/pdf pdf Portable document
#> 69 application/pdf pdf Portable document
#> 70 video/mp4 mp4 MPEG-4 video
#> 71 application/pdf pdf Portable document
#> 72 video/mp4 mp4 MPEG-4 video
#> 73 video/mp4 mp4 MPEG-4 video
#> 74 video/mp4 mp4 MPEG-4 video
#> 75 video/mp4 mp4 MPEG-4 video
#> 76 application/pdf pdf Portable document
#> 77 application/pdf pdf Portable document
#> 78 application/pdf pdf Portable document
#> 79 application/pdf pdf Portable document
#> 80 video/mp4 mp4 MPEG-4 video
#> 81 video/mp4 mp4 MPEG-4 video
#> 82 application/pdf pdf Portable document
#> 83 video/mp4 mp4 MPEG-4 video
#> 84 video/mp4 mp4 MPEG-4 video
#> 85 video/mp4 mp4 MPEG-4 video
#> 86 video/mp4 mp4 MPEG-4 video
#> 87 video/mp4 mp4 MPEG-4 video
#> 88 video/mp4 mp4 MPEG-4 video
#> 89 video/mp4 mp4 MPEG-4 video
#> 90 video/mp4 mp4 MPEG-4 video
#> 91 video/mp4 mp4 MPEG-4 video
#> 92 video/mp4 mp4 MPEG-4 video
#> 93 video/mp4 mp4 MPEG-4 video
#> 94 application/pdf pdf Portable document
#> 95 application/pdf pdf Portable document
#> 96 application/pdf pdf Portable document
#> 97 video/mp4 mp4 MPEG-4 video
#> 98 video/mp4 mp4 MPEG-4 video
#> 99 video/mp4 mp4 MPEG-4 video
#> 100 video/mp4 mp4 MPEG-4 video
#> 101 video/mp4 mp4 MPEG-4 video
#> 102 video/mp4 mp4 MPEG-4 video
#> 103 video/mp4 mp4 MPEG-4 video
#> 104 video/mp4 mp4 MPEG-4 video
#> 105 video/mp4 mp4 MPEG-4 video
#> 106 video/mp4 mp4 MPEG-4 video
#> 107 video/mp4 mp4 MPEG-4 video
#> 108 video/mp4 mp4 MPEG-4 video
#> 109 video/mp4 mp4 MPEG-4 video
#> 110 video/mp4 mp4 MPEG-4 video
#> 111 video/mp4 mp4 MPEG-4 video
#> 112 application/pdf pdf Portable document
#> 113 audio/mpeg mp3 MPEG-1 or MPEG-2 audio layer III
#> 114 video/mp4 mp4 MPEG-4 video
#> 115 video/mp4 mp4 MPEG-4 video
#> 116 video/mp4 mp4 MPEG-4 video
#> 117 video/mp4 mp4 MPEG-4 video
#> 118 application/pdf pdf Portable document
#> 119 video/mp4 mp4 MPEG-4 video
#> 120 video/mp4 mp4 MPEG-4 video
#> 121 video/mp4 mp4 MPEG-4 video
#> 122 audio/mpeg mp3 MPEG-1 or MPEG-2 audio layer III
#> 123 video/mp4 mp4 MPEG-4 video
#> 124 video/mp4 mp4 MPEG-4 video
#> 125 video/mp4 mp4 MPEG-4 video
#> 126 video/mp4 mp4 MPEG-4 video
#> 127 application/pdf pdf Portable document
#> 128 video/mp4 mp4 MPEG-4 video
If we log-in using the commands described in authorized users, and provide the
function with a valid (non-NULL) httr2
request parameter,
the following function call would show files and data that are
restricted to authorized users:
databraryr::list_volume_assets(vol_id = `<SOME_OTHER_VOLUME_ID>`, rq = rq)
Obviously, you would need to supply a vol_id
for some
other non-public dataset for this to return useful information.
The list_volume_assets()
command returns a data frame we
can manipulate using standard R commands. Here are the variables in the
data frame.
vol1_assets <- databraryr::list_volume_assets()
names(vol1_assets)
#> [1] "asset_id" "asset_format_id" "asset_duration" "asset_name"
#> [5] "asset_permission" "asset_size" "session_id" "session_date"
#> [9] "session_release" "format_mimetype" "format_extension" "format_name"
Or, if you use the R (> version 4.3) ‘pipe’ syntax:
databraryr::list_volume_assets() |>
names()
#> [1] "asset_id" "asset_format_id" "asset_duration" "asset_name"
#> [5] "asset_permission" "asset_size" "session_id" "session_date"
#> [9] "session_release" "format_mimetype" "format_extension" "format_name"
The magrittr
package pipe (‘%>%’) also works (as of
databraryr v0.6.2).
The asset_format_id
variable tells us information about
the type of the data file.
unique(vol1_assets$asset_format_id)
#> [1] -800 6 5 16 2 -600
But this isn’t especially informative since the
asset_format
is a code, and we don’t really know what
-800
or 6
or the other numbers refer to. To
decode it, we create a data frame of all the file formats Databrary
currently recognizes.
db_constants <- databraryr::assign_constants()
formats_df <- purrr::map(db_constants$format, as.data.frame) |>
purrr::list_rbind()
formats_df
#> id
#> 1 -800
#> 2 -700
#> 3 -600
#> 4 1
#> 5 2
#> 6 4
#> 7 5
#> 8 6
#> 9 7
#> 10 8
#> 11 9
#> 12 10
#> 13 11
#> 14 12
#> 15 13
#> 16 14
#> 17 15
#> 18 16
#> 19 18
#> 20 19
#> 21 20
#> 22 21
#> 23 22
#> 24 23
#> 25 24
#> 26 25
#> 27 26
#> 28 27
#> 29 28
#> 30 29
#> 31 30
#> 32 31
#> mimetype
#> 1 video/mp4
#> 2 image/jpeg
#> 3 audio/mpeg
#> 4 text/plain
#> 5 text/csv
#> 6 text/rtf
#> 7 image/png
#> 8 application/pdf
#> 9 application/msword
#> 10 application/vnd.oasis.opendocument.text
#> 11 application/vnd.openxmlformats-officedocument.wordprocessingml.document
#> 12 application/vnd.ms-excel
#> 13 application/vnd.oasis.opendocument.spreadsheet
#> 14 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
#> 15 application/vnd.ms-powerpoint
#> 16 application/vnd.oasis.opendocument.presentation
#> 17 application/vnd.openxmlformats-officedocument.presentationml.presentation
#> 18 application/vnd.datavyu
#> 19 video/webm
#> 20 video/mpeg
#> 21 video/quicktime
#> 22 video/mp2t
#> 23 video/avi
#> 24 application/x-spss-sav
#> 25 audio/wav
#> 26 video/x-ms-wmv
#> 27 text/x-chat
#> 28 audio/aac
#> 29 audio/x-ms-wma
#> 30 application/vnd.lena.interpreted-time-segments
#> 31 video/x-dv
#> 32 text/elan
#> extension name transcodable
#> 1 mp4 MPEG-4 video -800
#> 2 jpg JPEG image NA
#> 3 mp3 MPEG-1 or MPEG-2 audio layer III -600
#> 4 txt Plain text NA
#> 5 csv Comma-separated values NA
#> 6 rtf Rich text format NA
#> 7 png Portable network graphics NA
#> 8 pdf Portable document NA
#> 9 doc Microsoft Word document NA
#> 10 odf OpenDocument text NA
#> 11 docx Microsoft Word (Office Open XML) document NA
#> 12 xls Microsoft Excel spreadsheet NA
#> 13 ods OpenDocument spreadsheet NA
#> 14 xlsx Microsoft Excel (Office Open XML) workbook NA
#> 15 ppt Microsoft PowerPoint presentation NA
#> 16 odp OpenDocument presentation NA
#> 17 pptx Microsoft PowerPoint (Office Open XML) presentation NA
#> 18 opf Datavyu NA
#> 19 webm WebM video -800
#> 20 mpg MPEG program stream (MPEG-1/MPEG-2 video) -800
#> 21 mov QuickTime video -800
#> 22 mts MPEG transport stream -800
#> 23 avi Audio Video Interleave -800
#> 24 sav SPSS System File NA
#> 25 wav Waveform audio -600
#> 26 wmv Windows Media video -800
#> 27 cha Codes for the Human Analysis of Transcripts NA
#> 28 aac Advanced Audio Coding -600
#> 29 wma Windows Media audio -600
#> 30 its LENA Interpreted Time Segments NA
#> 31 dv Digital Interface Format video -800
#> 32 eaf ELAN - Linguistic Annotator NA
From this, we see that format -800
is an MP4-formatted
video. There are lots of those in Volume 1. We see that6
is
a PDF document.
As of 0.6.0, list_volume_assets()
adds this information
to the data frame.
We can summarize the number of files using the
stats::xtabs()
function:
stats::xtabs(~ format_name, data = vol1_assets)
#> format_name
#> Comma-separated values Datavyu
#> 2 1
#> MPEG-1 or MPEG-2 audio layer III MPEG-4 video
#> 2 75
#> Portable document Portable network graphics
#> 47 1
So, there are lots of videos and PDFs to examine in volume 1. Here is a table of the ten longest videos.
vol1_assets |>
dplyr::filter(format_name == "MPEG-4 video") |>
dplyr::select(asset_name, asset_duration) |>
dplyr::mutate(hrs = asset_duration/(60*60*1000)) |>
dplyr::select(asset_name, hrs) |>
dplyr::arrange(desc(hrs)) |>
head(n = 10) |>
knitr::kable(format = 'html')
asset_name | hrs |
---|---|
PLAY workshop videocast 2016-12-16 | 6.824346 |
video | 4.149724 |
DatabraryAdvisoryBoardMeeting2017 | 4.052759 |
VIDEO: Databrary Board Meeting - June 13, 2016 | 3.647022 |
Board Meeting | 3.048996 |
Databrary Pre-conference | 2.702424 |
Policies & best practices for sharing & managing video data | 1.521523 |
Private Beta demo | 1.400848 |
Overview and Policy Update | 1.378892 |
Advisory Board Meeting-2017-06-09 Part-2.mp4 | 1.375093 |
Accessing metadata
Imagine you are interested in knowing more about this volume, the people who created it, or the agencies that funded it.
The list_volume_owners()
function returns a data frame
with information about the people who created and “own” this particular
dataset. The function has a parameter this_vol_id
which is
an integer, unique across Databrary, that refers to the specific
dataset. The list_volume_owners()
function uses volume 1 as
the default.
databraryr::list_volume_owners()
#> # A tibble: 3 × 2
#> owner_name party_id
#> <chr> <int>
#> 1 Adolph, Karen 5
#> 2 Gilmore, Rick O. 6
#> 3 Staff 308
The command (and many like it) can be “vectorized” using the
purrr
package. This let’s us generate a tibble with the
owners of the first fifteen volumes.
purrr::map(1:15, databraryr::list_volume_owners) |>
purrr::list_rbind()
#> Cannot access requested resource on Databrary. Exiting.
#> Cannot access requested resource on Databrary. Exiting.
#> Cannot access requested resource on Databrary. Exiting.
#> Cannot access requested resource on Databrary. Exiting.
#> Cannot access requested resource on Databrary. Exiting.
#> # A tibble: 14 × 2
#> owner_name party_id
#> <chr> <int>
#> 1 Adolph, Karen 5
#> 2 Gilmore, Rick O. 6
#> 3 Staff 308
#> 4 Gilmore, Rick O. 6
#> 5 Adolph, Karen 5
#> 6 Adolph, Karen 5
#> 7 Adolph, Karen 5
#> 8 Tamis-LeMonda, Catherine 11
#> 9 Adolph, Karen 5
#> 10 Gordon, Peter 20
#> 11 Karasik, Lana 32
#> 12 Tamis-LeMonda, Catherine 11
#> 13 Adolph, Karen 5
#> 14 Messinger, Daniel 70
As of 0.6.0, the get_volume_by_id()
returns a list of
all data about a volume that is accessible to a particular user. The
default is volume 1.
vol1_list <- databraryr::get_volume_by_id()
names(vol1_list)
#> [1] "id" "name" "body" "doi"
#> [5] "creation" "owners" "permission" "publicsharefull"
#> [9] "publicaccess" "access" "citation" "links"
#> [13] "funding" "top" "tags" "excerpts"
#> [17] "comments" "records" "containers" "metrics"
#> [21] "state"
Let’s create our own tibble/data frame with a subset of these variables.
vol1_df <- tibble::tibble(id = vol1_list$id,
name = vol1_list$name,
doi = vol1_list$creation,
permission = vol1_list$permission)
vol1_df
#> # A tibble: 1 × 4
#> id name doi permission
#> <int> <chr> <chr> <int>
#> 1 1 Databrary sponsored workshops and events 2013-01-11T10:26:40Z 1
The permission
variable indicates whether a volume is
visible by you, and if so with what privileges.
So, if you are not logged-in to Databrary, only data that are visible
to the public will be returned. Assuming you are not logged-in,
the above commands will show volumes with permission
equal
to 1. The permission
field derives from a set of constants
the system uses.
db_constants <- databraryr::assign_constants()
db_constants$permission
#> [[1]]
#> [1] "NONE"
#>
#> [[2]]
#> [1] "PUBLIC"
#>
#> [[3]]
#> [1] "SHARED"
#>
#> [[4]]
#> [1] "READ"
#>
#> [[5]]
#> [1] "EDIT"
#>
#> [[6]]
#> [1] "ADMIN"
The permission
array is indexed beginning with 0. So the
1th (1st) value is “PUBLIC”. So, the 1
means that the
volumes shown above are all visible to the public, and to you.
Volumes that you have not shared and are not visible to the public,
will have permission
equal to 5, or “ADMIN”. We can’t
demonstrate this to you because we don’t have privileges on the same
unshared volume, but you can try it on a volume you’ve created but not
yet shared.
Other functions with the form list_volume_*()
provide
information about Databrary volumes. For example, the
list_volume_funding()
command returns information about any
funders listed for the project. Again, the default volume is 1.
databraryr::list_volume_funding()
#> # A tibble: 2 × 4
#> funder_id funder_name funder_award vol_id
#> <int> <chr> <chr> <dbl>
#> 1 100000001 National Science Foundation (NSF) BCS-1238599 1
#> 2 100000071 National Institute of Child Health and Human De… U01-HD-0765… 1
The list_volume_links()
command returns information
about any external (web) links that have been added to a volume, such as
to related publications or a GitHub repo.
databraryr::list_volume_links()
#> # A tibble: 2 × 3
#> link_name link_url vol_id
#> <chr> <chr> <dbl>
#> 1 2016-12-16 NIH PLAY workshop videocast https://videocast.nih.… 1
#> 2 Video as data (Invited article in APS Observer) http://www.psychologic… 1
There’s much more to learn about accessing Databrary information
using databraryr
, but this should get you started.
Downloading multiple files
As of 0.6.3, it’s possible to download multiple files. The following
set of commands downloads all of the ‘csv’ files in volume 1 using the
output from list_volume_session_assets()
(when you have a
volume ID and a session ID) or list_session_assets()
when
you have only the session ID. The code below creates a new directory
based on the session/slot ID (9807). The function returns the file path
to the downloaded files.
vol1_assets |>
dplyr::filter(format_extension == "csv") |>
databraryr::download_session_assets_fr_df()
#> [1] "/tmp/Rtmp2cJAGp/9807/databrary-institutions-investigators.csv"
#> [2] "/tmp/Rtmp2cJAGp/9807/volumes-citations-monthly.csv"